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In the analysis of free variation in phonology, we often encounter the effects of INTERSECTING 

CONSTRAINT FAMILIES: there are two independent families of constraints, each of which has a 

quantifiable effect on the outcome. A challenge for theories is to account for the patterns that 

emerge from such intersection. We address three cases: Tagalog nasal substitution, French 

liaison/élision, and Hungarian vowel harmony, using corpus data. We characterize the patterns 

we find as across-the-board effects in both dimensions, restrained by floor and ceiling limits. We 

analyze these patterns using several formal frameworks, and find that an accurate account is best 

based on Harmonic Grammar (in one of its two primary quantitative implementations). Our work 

also suggests that that certain lexical distinctions treated as discrete by classical phonological 

theory (e.g. ‘h aspiré’ vs. ordinary vowel-initial words of French) are in fact gradient and require 

quantitative treatment.* 

 

  

                                                 
* We would like to thank Andy Lin of UCLA’s statistical consulting group for help without which 

the project would not have been feasible. Giorgio Magri kindly formulated and proved the theorem 

we use in §3.8.1. We also thank for their helpful advice Arto Anttila and Paul Smolensky, as well 

as audiences at the West Coast Conference on Formal Linguistics (Santa Cruz), the Workshop on 

Altaic Formal Linguistics (Cornell), the UCLA-USC phonology seminar, Seoul National 

University, and Yale University. The authors take full responsibility for remaining errors. 
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1. INTRODUCTION. A key debate in constraint-based linguistic frameworks concerns RANKING 

versus WEIGHTING. Optimality Theory (Prince & Smolensky 1993/2004) uses strict ranking: 

Candidate A is preferred to Candidate B if the highest-ranked constraint that distinguishes 

between them prefers A. In Harmonic Grammar (Legendre, Miyata & Smolensky 1990, 

Legendre, Sorace & Smolensky 2006, Potts et al. 2010, and others), the constraints bear numeric 

weights, and the winner is the candidate with the best Harmony value (a weighted sum of 

constraint violations). 

In both approaches there are ways, discussed below, of elaborating the core ideas to 

assign probability distributions to outputs, rather than predicting a single winner. Such grammars 

can be used to model free variation and gradient intuitions, increasing the realism of analysis and 

its engagement with data. Some of the probabilistic frameworks are affiliated with learning 

algorithms, which make it possible to address more directly the core theoretical issue (e.g. 

Chomsky 1965) of how language is acquired. However, grammars constructed within these 

frameworks have similar behavior, capturing both extreme and intermediate rates of variation. 

This makes it hard to produce empirical arguments in favor of one particular framework. Until 

now, researchers have tended to adopt one framework or another on the grounds of 

computational ease, or the convergence properties of the available learning algorithms (e.g. Pater 

2008, Magri 2012). We address this difficulty here by examining how the frameworks fare on 

INTERSECTING CONSTRAINT FAMILIES. 

We argue that the quantitative patterns we observe in three case studies have a natural 

account with constraint weighting, but not with constraint ranking. Results are similar for two 

implementations of Harmonic Grammar, Noisy HG and MaxEnt. We also consider and reject 

models in which the constraints from the two dimensions do not interact directly but instead are 

placed in different components (decision-tree models). 

A secondary point we will make concerns LEXICAL PROPENSITY, the tendency of 

individual lexical items toward one phonological behavior. We will see this particularly in the 

case study below of French, where different words have different, idiosyncratic tendencies to 

require a preceding syllable boundary, and in the case study of Tagalog, where different prefixes 

have different tendencies to resist a phonological rule. We will show that lexical propensity is 

well modeled with lexically specific constraint weights.  
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1.1 INTERSECTING CONSTRAINT FAMILIES. Intersecting constraint families arise when a 

phonological outcome is influenced by two independent dimensions, with each dimension 

referred to by a different set (FAMILY) of constraints. For instance, we will see below that the 

frequency of front or back suffix allomorphs in Hungarian vowel harmony is determined by one 

set of constraints that refer to the vowels of the stem, and a second that refer to the stem-final 

consonant(s). The two constraint sets are orthogonal because there is no necessary connection in 

Hungarian between what vowels a stem may have and what consonants it ends in. It is an 

empirical question how the vowel-constraint family and the consonant-constraint family interact 

in determining harmony. 

The question of intersecting constraint families can be visualized as a rectangular array in 

which the rows and columns represent constraints of the two families, as schematized in Figure 

1, where there are constraints applicable to different consonant places, and constraints applicable 

to different vowel heights. Each data cell (shown in dark grey) occurs at the intersection of two 

constraints, and holds the rate of the phonological outcome for words that those two constraints 

apply to. In this hypothetical illustration, the outcome is vowel devoicing, and it depends on both 

consonant place and vowel height.1 

 

Figure 1 <INSERT Figure 1 HERE> 

 

On standard scientific grounds, we would hardly want to set up a grammar that stipulates 

the outcome rate for each cell separately, with nine separate parameters. Rather, we would prefer 

a system that assigns the right properties (rankings or weights) to each row and column, and lets 

the behavior of the individual cells follow from the general theory of constraint interaction. 

As we will see, the available theories make quite different predictions about how 

intersecting constraint families should behave. It will emerge that Harmonic Grammar, in two 

different versions (MaxEnt grammars and Noisy Harmonic Grammar) makes predictions that 

match well with data, and the alternative theories are considerably less successful. 
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1.2 CASES EXAMINED. To make our inquiry possible, we require phenomena with the following 

four properties. First, there must be variable output that depends predictably on some factors. 

Second, the factors must belong to two (or more) orthogonal families of constraints. Third, the 

degree of variation should be substantial in both families, ideally reaching floor and ceiling 

levels (0 and 1) for both. Lastly, there must be ample corpus data: if the intersecting constraint 

families have n and m members, respectively, the corpus must be large enough to populate each 

cell of an n by m rate matrix with a substantial number of observations. 

 We will present case studies from Tagalog, French, and Hungarian that meet or 

approximate the above criteria. We will see that Harmonic Grammar is successful regardless of 

whether the intersecting constraint families are antagonistic (one dimension consists of 

constraints favoring one candidate, and the other dimension of constraints favoring the other 

candidate), synergistic (both dimensions consist of constraints favoring the same candidate, 

against a single opposing constraint that applies in all cases), or a mix. The French case involves 

synergistic constraint families, and Hungarian and Tagalog both involve a mix. 

 

2. TAGALOG NASAL SUBSTITUTION 

 

2.1 NASAL SUBSTITUTION. The process known as nasal substitution is widespread in Western 

Austronesian languages (Newman 1984, Blust 2004, Pater 2001). In the Tagalog version, 

analyzed in detail in Zuraw 2010, the final /ŋ/ of a prefix fuses with the initial obstruent of a stem 

to form a nasal that has the original obstruent’s place of articulation. 

 
(1) Tagalog nasal substitution 

 /maŋ-biɡáj/   → [ma-miɡáj]  ‘to distribute’  

 /maŋ-súlat/  → [mà-nulát]  ‘to write professionally’ 

 /ma-paŋ-kamkám/ → [ma-pa-ŋamkám] ‘rapacious’ 

 

 Nasal substitution can apply to /p/ and /b/, yielding [m], to /t, d, s/, yielding [n], and to [k, 

g, Ɂ], yielding [ŋ]. When nasal substitution does not apply, the prefix /ŋ/ generally assimilates in 

place to the following obstruent. 
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(2) Tagalog nasal substitution: examples of non-application 

 /paŋ-poʔók/   → [pam-poʔók] ‘local’ 

 /paŋ-súlat/  → [pan-súlat]  ‘writing instrument’ 

 /maŋ-RED-kúlam/ → [maŋ-ku-kúlam] ‘witch’ 

 

 Although every Tagalog obstruent has the possibility of undergoing nasal substitution or 

not, there are two strong phonological trends: voiceless obstruents undergo more than voiced, 

and, especially within the voiced obstruents, fronter (labial) consonants undergo at higher rates 

and backer (velar) at lower rates. The mosaic plot in Figure 2, taken from Zuraw 2010, shows 

dictionary data (English 1986). For each place/voicing combination, the number of words listed 

in the dictionary as substituted or unsubstituted is plotted; words listed with two pronunciations 

are omitted in this plot. For example, the dictionary lists 253 words whose stem begins with /p/ 

that undergo nasal substitution, and 10 whose stem begins with /p/ that do not undergo. The 

width of each column is proportional to the number of words making it up. Data from a corpus of 

mixed web text (blogs, discussion forums, newspapers; Zuraw 2009) show similar trends; see 

Zuraw 2010. 

 

Figure 2<INSERT Figure 2 HERE> 

 
 

2.2 NASAL SUBSTITUTION RATES WITH DIFFERENT PREFIXES. We have now seen the first of our 

constraint families, phonological constraints that concern consonant place and voicing. The 

second family will concern morphology. Figure 2 included all relevant words in the dictionary, 

regardless of morphology. If we split up the data by morphology, however, we find that the 

prefix constructions differ greatly in the frequency with which they trigger nasal substitution. 

Figure 3 is a mosaic plot, based on Zuraw 2010,2 that shows nasal substitution rates for the six 

most type-frequent prefixing constructions in the dictionary, and includes words listed in the 

dictionary as having both substituted and unsubstituted pronunciations (in grey). 

 
Figure 3<INSERT Figure 3 HERE> 

1 
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2.3 INTERACTION OF THE TWO FACTORS. Since both consonant identity and prefix identity 

strongly influence the frequency of substitution, we can examine how they interact, with the 

ultimate goal of modeling this interaction in various frameworks. The interaction data are given 

in Figure 4, where stem-initial consonant is plotted on the horizontal axis and each trace 

represents one prefix construction. If a word is listed in the dictionary as variable, it contributes 

0.5 to the non-substituting count for the relevant consonant and prefix, and 0.5 to the substituting 

count.  

 
Figure 4<INSERT Figure 4 HERE> 

 

There are two essential observations to be made. First, by and large, both the voicing and 

place effects hold ACROSS THE BOARD: they hold true not just of the data as a whole, but to a fair 

extent for each individual prefix. This can be seen in the roughly parallel course of the lines 

plotted in Figure 4. The prefix effects are also, to a fair degree, across-the-board: they hold for 

most of the consonants taken individually, which can be seen in the dearth of crossing lines. 

Thus, particular combinations of consonant and prefix do not overturn the general patterns. 

Our second point is that where across-the-board patterning is not complete, this is 

because it is limited by FLOOR and CEILING effects. For instance, the prefix with the highest rate 

(maŋ-) flattens out place differences among p, t/s, k against the ceiling of 100%, and the prefix 

with the lowest rate (paŋ- reservational) flattens out most of the place difference among b, d, g 

against the floor. The intermediate prefixes show greater consonantal distinctions. By the same 

token, morphological differences are greatest for consonants with intermediate rates of nasal 

substitution (e.g. b), whereas the consonant with the highest rate (p) compresses four of the 

prefixes against the ceiling, and the consonant with the lowest rate (g) compresses all of the 

prefixes nearly against the floor. 

 The basic pattern—across-the-board effects in both dimensions, restrained by floor and 

ceiling effects—is found, we claim, in all of the data we examine in this article. Our goal is to 

study how grammar models can capture such effects. To start, we must set up a constraint system 

that permits the models to engage with the Tagalog data. 
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2.4 CONSTRAINTS FOR GRAMMAR MODELING. The Tagalog models below all use the same 

constraint set, adapted from Zuraw 2010. The basic setup is a standard one in Optimality Theory: 

markedness constraints that favor a particular change are opposed by faithfulness constraints. We 

set up the following markedness constraint as the fundamental force behind nasal substitution. 

 

(3) NASSUB: Assess one violation for any nasal+obstruent sequence, where + is a morpheme 
boundary within a word. 

 

When the stem begins with a voiceless obstruent, an additional markedness constraint 

further favors substitution. 

 

(4) *NC̥: Assess one violation for every sequence of a nasal and a voiceless obstruent. 

 

This constraint is responsible for higher rates of nasal substitution seen in p/t/s/k. See Zuraw 

2010 for its phonetic motivation, Pater 1999 and Pater 2001 for its role in nasal substitution 

cross-linguistically. 

The opposing faithfulness constraints, following Pater (1999), are all UNIFORMITY 

constraints (McCarthy & Prince 1995) that ban merging two input segments into one output 

segment, hence penalizing nasal substitution. Our UNIFORMITY constraints are indexed to each 

prefix construction, to capture the prefix differences observed above. 

 

(5) Faithfulness constraints penalizing nasal substitution 

a. UNIF-maŋ-OTHER:  One segment from input maŋ-other and a distinct input 

 segment must not correspond to the same output segment 

b. UNIF-paŋ-RED-:  similarly for paŋ-RED- 

c. UNIF-maŋ-RED-: similarly for maŋ-RED- 

d. UNIF-maŋ-ADV:  similarly for maŋ-adv 

e. UNIF-paŋ-NOUN:  similarly for paŋ-noun 

f. UNIF-paŋ-RES:  similarly for paŋ-res 
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We capture the place-of-articulation differences with markedness constraints that militate 

against nasal substitution by penalizing roots that begin with the nasal segments that result. 

 

(6) Markedness constraints penalizing nasal substitution 

a. *[root m/n/ŋ: one violation for every root that begins with a nasal  

b. *[root n/ŋ:  one violation for every root that begins with [n] or [ŋ] (penalizes 

substitution on coronals and velars) 

c. *[root ŋ:  one violation for every root that begins with [ŋ] (penalizes 

substitution on velars) 

 

These constraints express a general tendency for Tagalog roots not to begin with nasals: only 5% 

of disyllabic native roots in English's (1986) dictionary begin with a nasal, while 22% of root-

medial, and 16% of root-final consonants are nasal. This trend is stronger for backer nasals. We 

regard the *[root NASAL constraints as special cases of general constraints against domain-initial 

sonorants (e.g. Prince & Smolensky’s [1993/2004] family of MARGIN/λ constraints; see Flack 

2007 on domain-initial [ŋ] in particular). Their formulation assumes that the nasal resulting from 

nasal substitution is root-initial; for support for this assumption from reduplication see Zuraw 

2010.  

 The consonant-sensitive constraints in 4 and 6 can be thought of as one constraint family, 

and the prefix-sensitive constraints in 5 as another. 

We provide sample tableaux used in our simulations below in 7, showing the input, both 

output candidates, and all constraint violations. For the full set of 36 tableaux, see the OTSoft 

input files provided as supplemental materials. 

 

(7) Sample Tagalog tableaux 

<INSERT Tableau 7 HERE> 
 

With these constraints in place, we can now turn to a variety of models and see how they 

perform in accounting for the data pattern. 
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2.5 ANALYSIS IN HARMONIC GRAMMAR. Harmonic Grammar is rooted in early work in general 

cognition by Smolensky (1986); the first application to language is Legendre, Miyata & 

Smolensky 1990. The key idea behind all forms of Harmonic Grammar is that constraints are not 

RANKED but WEIGHTED; that is, each constraint bears a real number that reflects its importance in 

the selection of winning candidates. 

All forms of Harmonic Grammar start with the weighted sum of the constraint violations 

of each candidate, often called the HARMONY of the candidate. The two flavors of Harmonic 

Grammar we will cover here, Maximum Entropy and Noisy Harmonic Grammar, differ in how 

the harmony values are cashed out as quantitative predictions about frequency. 

 

MAXIMUM ENTROPY MODEL. The roots of MaxEnt can be seen a variety of fields: physics and 

information theory (Jaynes 1957), cognitive science (Smolensky 1986), and computer science 

(Berger, Della Pietra & Della Pietra 1996, Della Pietra, Della Pietra & Lafferty 1997). The 

implementation of basic MaxEnt ideas within the GEN + EVAL architecture of Optimality 

Theory (Prince & Smolensky 1993/2004) first appeared in Goldwater and Johnson 2003.3 

MaxEnt renders Harmonic Grammar probabilistic by means of a formula that converts harmony 

values to output probability; this is given in 8 (Della Pietra, Della Pietra & Lafferty 1997: 1) and 

unpacked immediately below.4  

 

(8) Formula for probability in MaxEnt: p(ω) = 
1
Z

 e−ΣiwiCi(ω)
      where Z = Σj e

−ΣiwiCi(ωj) 

 
We illustrate how this works with an annotated example tableau in 9. When a /t/-initial 

stem is prefixed with noun-forming paŋ-, the nasal-substituted output candidate wins for about 

two-thirds of words. An example is /paŋ+taním/ ‘something used for planting’. This particular 

word can surface as either [pananím] or [pantaním], but the 67% figure represents the behavior 

of the language as a whole: in the dictionary data there are 60.5 words with substitution 

(counting free variants by halves) and 29.5 without. Instead of asterisks, each cell shows a 

candidate’s number of violations. 
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(9) Sample MaxEnt tableau5 

<INSERT Tableau 9 HERE> 
 

 

The purpose of the grammar is to generate the probabilities in the rightmost column of 9. 

The first step is to compute each candidate’s harmony, which as noted above is a weighted sum 

of the candidate’s constraint violations. 

 

(10) Formula for harmony: H(x) = ∑
=

N

i

ii xCw
1

)(  

 

Here, H(x) designates the harmony of candidate x; wi is the weight of the ith constraint 

(weights appear in top row of 9), and Ci(x) is the number of times x violates the ith constraint. 

∑
=

N

i 1

 denotes summation over all N constraints. 

The next step is to negate the harmony values and take e (the base of natural logarithms, 

about 2.718) to the result. The resulting number, which Wilson (2014) calls eHarmony, is then 

used in the next stage of the computation. 

 

(11) Formula for eHarmony:  eHarmony(x) = e−H(x) 

 

The last step is total up the eHarmony of all candidates; this sum is labeled Z. The 

predicted probability of any candidate is then its share of Z. 

 

(12) Formula for computing probability  

a.  Computing Z: Z = Σj eHarmony(j) 

b. Computing predicted probability of candidate x:  p(x) = 
eHarmony(x)

Z
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In our annotated sample tableau in 9, the nasal-substituted candidate thus receives a probability 

of 0.73, and the unsubstituted one 0.27, not far off from the observed probabilities of 0.67 

(60.5/90 words) and 0.33 (29.5/65 words). 

 The substance embodied in the MaxEnt calculations is as follows. First, negation of 

Harmony means that it acts as a kind of penalty score, so that heavily penalized candidates get 

lower eHarmonies and thus ultimately lower probabilities (see fn. 4). Second, constraints with 

higher weights have more powerful effects, in that candidates that violate them are assigned 

lower probabilities. Third, as with all forms of Harmonic Grammar (and unlike in strict-ranking 

Optimality Theory) there is pervasive CUMULATIVITY (Jäger & Rosenbach 2006): violations of 

two weaker constraints (or multiple violations of a single weak constraint) can outweigh a 

violation of a stronger constraint. The cumulative property will emerge as crucial in the studies 

to follow.  

Readers often ask for an intuitive explanation of why harmony must be exponentiated (as 

in 11). Exponentiation performs two functions: it keeps probability from ever going negative 

(which is logically impossible), and it implements our human intuition that a great deal of 

evidence is needed when we are aiming at certainty. For example, it can be shown by the 

equations above that when, in a two-candidate system, candidate C1 is already at probability .99, 

then we would have to penalize its opponent C2 by an additional harmony of 2.3 to get P(C1) to 

move up to .999. To reach P(C1) = .9999, we need yet another 2.3 units of harmony. In the 

medial regions, by contrast, comparable linear shifts of probability come cheaply: it only takes 

0.0036 units of harmony added to C2 to promote P(C1) from .5 to .5009; and only 0.00036 more 

units to get P(C1) up to .50099. Such differences show up geometrically in the sigmoid curves 

seen below. 

 

THE ROLE OF THE GRAMMAR. What does it mean to formulate a grammar that predicts that 2/3 of 

the words in a particular class will undergo a phonological process? Individual words have a 

particular behavior (substitution, nonsubstitution, or variation) that must be encoded somehow in 

the lexicon, seemingly obviating the need for a grammar. Following earlier work (ZURAW 2000, 

ZURAW 2010), our model is intended as an account of the PRODUCTIVE BEHAVIOR of Tagalog 

speakers when they apply ŋ-final prefixes in creating novel forms. In a nonce-probe (wug) test 

(Berko 1958), Tagalog speakers showed preferences for substitution that reflected the statistics 
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of their lexicon. The same held for Spanish loanwords that have been incorporated into Tagalog, 

in effect a real-life wug test over time. 

The tendency of productive behavior to match lexical frequencies has been documented 

in a variety of languages, leading us to give the phenomenon a name, the Law of Frequency 

Matching (Hayes et al. 2009). In the Hungarian example below, we will model experimental 

behavior as well as the lexicon. 

 

LEARNING AND THE MAXENT GRAMMAR. The weights used in 9 were fitted using OTSoft 

(HAYES, TESAR & ZURAW 2014). Weights are fitted so as to maximize the model’s predicted 

probability for the observed data. We set σ2, the parameter that determines how willing the 

weights are to deviate from zero (or another default value), to 10,000, so that there is essentially 

no penalty on large weights, and the learner’s only goal is to fit the data. The weights learned are 

listed in Table 1, and the resulting predicted probabilities are plotted in Figure 5. 

 

Table 1<INSERT Table 1 HERE> 

 

Figure 5<INSERT Figure 5HERE> 

 

The predicted probabilities should be compared with the observed probabilities given 

earlier in Figure 4. It can be seen that the MaxEnt grammar grossly captures the observed ceiling 

and floor effects: consonantal differences are biggest for the intermediate prefixes, and prefix 

differences are biggest for the intermediate consonants, flattening out for the most extreme 

consonants on both ends, although the model does not succeed in producing uniformly low nasal 

substitution rates for /ɡ/. (Fit of this and other models is quantified in Section 2.7.) 

 

MATHEMATICAL BASIS OF THE FLOOR AND CEILING EFFECTS. The reason that MaxEnt produces 

floor and ceiling effects has to do with the sigmoid shape of candidate probability as a function 

of constraint-weight difference. For each consonant, there is a certain MARKEDNESS DIFFERENCE 

between the substituted and unsubstituted candidates—specifically, the weights of the applicable 

*[root NASAL constraints (which favor the unsubstituted candidate) minus the weights of NASSUB 
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and *NC̥ if applicable (which favor the substituted candidate). In the tableau in 9 for 

/paŋ-Noun+t ... /, this was (0.00 + 2.13) – (2.31 + 4.85) = -5.0 (after rounding). The probability of 

nasal substitution for each prefix at each consonant is a function of the markedness difference for 

that consonant, and of the relevant UNIFORMITY constraint’s weight. The function is logistic, of 

the form p(subst)=
)(_1

1
UNIFORMITYweightdifferencemarkednesse +

+

. Details of how this function is 

derived are shown in 13, for the example consonant /b/. 

 

(13) Probability of nasal substitution for /b/ 

Exponentiated constraint violations of substituted candidate, divided by sum of 

exponentiated violations for both candidates: 

 

)()//(*[)(

)//(*[)(

NasSubweightngnmweightUNIFORMITYweight

ngnmweightUNIFORMITYweight

ee

e
−−−

−−

+

 

 

Divide top and bottom by the numerator: 

 

)()()//(*[1

1
UNIFORMITYweightNasSubweightngnmweighte +−

+

=  

 

 

 With the fitted weights in our grammar, the probability function for maŋ-other, the most-

substituting prefix, is p(subst)= 
00.0_1

1
+

+
differencemarkednesse

and for paŋ-res, the least-

substituting prefix, p(subst)=
01.6_1

1
+

+
differencemarkednesse

. These two versions of the function 

are plotted in Figure 6. Dashed vertical lines show the markedness difference for each consonant. 

The plot shows that the prefixes are best distinguished—that is, the two sigmoids are the farthest 

apart—for the intermediate consonants, and begin to collapse together against the ceiling or floor 

for the consonants at each extreme. As the markedness difference becomes more negative, both 
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denominators converge towards 1+0. Thus, the two probabilities converge towards 1/(1+0) = 1. 

As the markedness difference becomes more positive, both denominators grow so large that both 

probabilities are indistinguishably close to zero.  

 

Figure 6<INSERT Figure 6 HERE> 

 

 In general, a function of the form 
ne+1

1
is very close to either 1 or 0 for most values of 

n. In order to see a value between 0.99 and 0.01, n must be between about -5 and 5, and to see a 

value between 0.90 and 0.10, n must be between about -2.2 and 2.2. In our example, this means 

that if either group of constraints is contributing a large negative or positive value to n—such as 

p’s markedness difference of -7.2—then it will take large opposing value contributed by the 

other group—UNIFORMITY—to pull the probability of the substituted candidate away from the 

ceiling or floor. The result is that choice of prefix matters less for the extreme consonants p and g 

than for the intermediate consonants k and b. 

 Similar calculations show that consonant differences are greatest for UNIFORMITY 

constraints with intermediate weights, and smallest for those with extreme weights (see 

supplemental materials for examples). 

In this example, we have two dimensions of variation: constraints relevant to the 

consonant were grouped into the MARKEDNESS DIFFERENCE, and constraints relevant to the 

morphology were in the UNIFORMITY family. We have shown that when the difference (in 

weighted constraint violations) between two candidates is already large in one dimension, the 

other dimension has little effect. In sum: the ability of MaxEnt to describe across-the-board 

patterns constrained by floor and ceiling effects is not accidental, but is a general prediction of 

the model, a direct consequence of the equations it employs. As we will see next, the same is true 

of Noisy Harmonic Grammar. 

 

NOISY HARMONIC GRAMMAR MODEL. Another method for making Harmonic Grammar 

probabilistic is Noisy Harmonic Grammar (Boersma 1998a, Boersma & Pater 2013). This system 

likewise starts by computing a harmony score for each candidate as given above in 10. Instead of 
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exponentiating and normalizing to obtain a probability, however, NHG simply designates the 

candidate with the best score as the winner. What makes the model NOISY (i.e. probabilistic) is 

that at each evaluation time, some Gaussian noise is added to each constraint’s weight, 

potentially changing the winning candidate. A candidate’s probability of winning is most easily 

determined by simulation: run the grammar some large number of times, and observe how often 

each candidate wins. 

 An example is shown in 14 for one evaluation instance.6 In this example, the winner after 

noise (substitution) is the same as the winner before noise. The farther apart the harmonies 

before noise, the less likely it is that noise can overturn the before-noise preference. 

 

(14) Sample Noisy HG tableau—one evaluation 

<INSERT Tableau 14 HERE> 
 

 Boersma and Pater (2008) have put forth an algorithm similar to Boersma's (1998b) 

Gradual Learning Algorithm, and have shown that it is effective for learning weights in Noisy 

HG. We used this algorithm to fit a Noisy HG grammar to the Tagalog data, with the same 

constraints as in the previous section and using OTSoft (Hayes, Tesar & Zuraw 2014).7 The 

resulting weights (used in the example above) are given in 15, and the model’s probabilities are 

shown in Figure 7.  

 

(15) Noisy HG weights, fitted to Tagalog 

<INSERT Table 15 HERE> 
 
 

 

Figure 7 <INSERT Figure 7 HERE> 
 

 

 The Noisy HG model captures the ceiling and floor effects, for similar reasons as in the 

MaxEnt model. To take just the simple case of /p/, the probability of substitution is the 

probability that the weights-plus-noise of *[root m/n/ŋ and UNIFORMITY are together smaller than 

those of *NC̥ and NASSUB, as in 16.  
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(16) probability of nasal substitution for /p/ = probability that the following inequality holds 

weight(*[root m/n/ŋ]) + noise + weight(UNIF) + noise  

<   weight(*NC̥) + noise + weight(NASSUB) + noise 

i.e. 

 

 noise + noise - noise - noise   <  weight(*NC̥) + weight(NASSUB) - weight(*[root m/n/ŋ]) - 

weight(UNIF) 

 

In other words, the probability of nasal substitution on /p/ is the probability that the sum8 of four 

independent, Gaussian random variables is less than a certain number (which will vary according 

to which UNIFORMITY constraint is in play). The sum of four independent Gaussians is itself a 

Gaussian, and the probability that it is less than some number—known as the cumulative 

distribution function—is sigmoid (Peters 2002: 4-5). Figure 8 shows this sigmoid function for 

/p/, and the analogous one for /k/. We can see that /p/’s probability of substituting clings to the 

ceiling until high values of UNIF (about 10), and that at hypothetical even higher values of UNIF, 

both consonants’ rates hit the floor. Vertical lines indicate the actual UNIFORMITY weights for 

our six prefixes. 

 

Figure 8<INSERT Figure 8 HERE> 

 
 

 As in the MaxEnt model, it is only when the two candidates (substituted and 

unsubstituted) are otherwise close competitors that prefix or consonant differences can be seen. 

When, for example, faithfulness is weighted too low to resist *NC̥ and *NASSUB, giving a large 

advantage to the substituted candidate, little difference between /p/ and /k/ is observed. Only 

when the substituted and unsubstituted candidates’ scores are otherwise reasonably close do the 

weights of *[root n/ŋ and *[root ŋ affect the outcome enough for a difference between /p/ and /k/ to 

emerge.  

 To sum up: Noisy Harmonic Grammar, just like MaxEnt, naturally generates sigmoid 

curves as a consequence of its basic mathematical form. These sigmoids, though not identical to 
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the MaxEnt sigmoids, serve the same function in accounting for across-the-board effects, 

overridden by floor and ceiling effects. 

 

2.6 SOME UNSUCCESSFUL MODELS. We now consider some models that are less successful in 

capturing the Tagalog data. 

 

STOCHASTIC OT MODEL In contrast to our two Harmonic Grammar models, which employ 

constraint weighting, a Stochastic OT grammar (Boersma 1998a) is a probability distribution 

over strict-ranking (classical) OT grammars. These probability distributions are quite restricted: 

they must be expressible by assigning each constraint a RANKING VALUE, such that the 

probability of a given constraint ranking is the probability that the ranking values, after adding 

noise, fall into the corresponding order. In other words, at evaluation time, Gaussian noise is 

added to each constraint’s ranking value, the constraints are ranked according to the resulting 

numbers, and strict-ranking OT applies as usual. Two constraints whose ranking values are far 

apart effectively have a fixed ranking, and those that are closer together vary appreciably in 

ranking. 

 The Gradual Learning Algorithm (Boersma 1998a) can be used to learn Stochastic OT 

grammars, although as Pater (2008) discusses, the algorithm is not guaranteed to converge and 

even if it does converge the result is not guaranteed to be the Stochastic OT grammar that best 

matches the data. To help address this problem, we used a modified version of OTSoft (Hayes, 

Tesar & Zuraw 2014) to run 999 learning simulations.9 We also ran 999 simulations using a 

slightly different version of the GLA incorporating an update rule devised by Magri (2012) in 

response to Pater's (2008) criticism of the original update rule. We picked the grammar that was 

the best fit (assigns the greatest log likelihood to the observed data) out of these, though it is still 

possible that a better-fitting grammar exists. 

  The ranking values for the best grammar, which was one of the Magri-fitted grammars, 

are listed in Table 2 and its predicted probabilities, derived by simulation in OTSoft, are plotted 

in Figure 9. 

 

Table 2<INSERT Table 2 HERE> 
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Figure 9<INSERT Figure 9 HERE> 

 

 The strongly negative weights (and one weight much lower than the rest) indicate that the 

learner is failing to converge; in particular, the weight of *[root m/n/ŋ continues to be pushed 

downwards, even after its weight is so low that it will never outrank a competing constraint. The 

extremely low ranking of *[root m/n/ŋ—too low for it ever to be decisive—means that there is 

virtually no difference between labials and coronals: p and t/s have nearly the same predicted 

behavior, and, more problematically, so do b and d, although they are quite different in the 

training data. There is little difference among the voiceless consonants at all, because *[root ŋ is 

not ranked high enough to compete with *NC̥ more than slightly; the competition is almost 

entirely between *NC̥ and UNIFORMITY constraints, none of which care about place of 

articulation. If *[root m/n/ŋ were ranked higher, however, then the model would do even worse at 

capturing p’s ceiling-wards tendency, and if *[root ŋ were ranked higher, then it would pull down 

substitution rates for k, not so much for the less-substituting prefixes, but for the most-

substituting prefixes, whose ranking values are closest to *[root ŋ’s; this would be a poor match to 

the training data. More generally, the model encounters repeated contradictions in finding a 

suitable placement for constraints on the ranking scale; they cannot be in two places at once, as 

we now discuss. 

 

WHY DOES THE STOCHASTIC OT MODEL FAIL FOR TAGALOG?  In certain instances it is possible to 

construct a Stochastic OT grammar that captures a family-of-sigmoids shape, but only with a set 

of constraints that is otherwise undesirable. We illustrate this by adopting an alternative 

constraint set for Tagalog that gives up on the goal of characterizing the voicing and place effects 

as interacting dimensions, and rather treats each voice/place combination as independent. We 

will first show that this constraint set succeeds, and then show why the preferred set of 

constraints fails: For our alternative constraint set, we simply adopt one markedness constraint 

demanding nasal substitution for each underlying consonant, *N+P, *N+T/S, and so on. Training 

the GLA with these constraints on the observed data (using the same procedure of selecting the 



20 
 

  

best-fit model from 999 runs each, with and without Magri’s update rule), we obtain the ranking 

values shown in Table 3 and the predictions seen in Figure 10. 

 

Table 3<INSERT Table 3 HERE> 

 

Figure 10<INSERT Figure 10 HERE> 

 

The grammar works because each data point is modeled as the interaction of just two 

opposing constraints. Convergence toward zero or one at the extremes is possible if the relevant 

markedness constraint is either extremely weak (*N+g) or quite strong (*N+p). In the middle, 

*N+b has an intermediate ranking value, producing a wide range of probabilities that it can 

outrank each UNIFORMITY constraint. 

 But our straw-man grammar misses the generalizations about voicing and place, which 

have typological support (Newman 1984, Blust 2004, Pater 2001, Zuraw 2010). It works only 

because each dimension—prefixes and consonants—lacks any internal structure. If we introduce 

internal structure, through constraints like *NC̥ (which is relevant for multiple consonant places) 

or *[root ŋ (relevant for both /k/ and /g/), then the Stochastic OT architecture can no longer fit a 

family of converging sigmoids, as we saw in Figure 9. 

The failure can be diagnosed with standard forms of ranking argumentation. We will 

build up a grammar to fit observed data points one by one, and arrive at a ranking paradox. First, 

to ensure near-zero nasal-substitution rates for /g/ with all prefixes, we need *[root ŋ to have a 

ranking value far above that of NASSUB (the only constraint favoring substitution for /g/). A 7-

point difference will keep substitution rates for /g/ below 1% (matching the empirically observed 

value).  

This difference is shown in the grammar on the left in Figure 11, where NASSUB’s 

ranking value is 93 and *[root ŋ’s is 100. The diagram is similar to a Hasse diagram used to depict 

the known ranking relation in a non-probabilistic OT grammar. The difference is that in a typical 

Hasse diagram, a line between two constraints indicates that the constraint on top outranks the 

one on the bottom, and the length of the line is irrelevant. Here, such a line indicates instead a 

ranking tendency, and the longer the line, the stronger the tendency. 
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 Consider next /b/. It has a high rate of substitution with maŋ-other, so NASSUB, the only 

constraint favoring substitution of /b/, must tend to outrank both *[root m/n/ŋ and UNIF-maŋ-OTHER. 

A difference of 4 points (as shown in Figure 11) means that each substitution-penalizing 

constraint has an 8% chance of outranking NASSUB, and the combined probability that one or the 

other outranks it is a little higher, 13%, giving /maŋ-other+b ... / an 83% rate of substitution. 

 As for /b/ with paŋ-noun., we want a lowish rate of substitution, around 33%. *[root m/n/ŋ 

can’t do the job of enforcing this low rate, because we’ve just established that it is ranked well 

below NASSUB. The task therefore falls to UNIF-paŋ-NOUN; we can give it a ranking value of 94, so 

that NASSUB outranks it 36% of the time (the actual rate of substitution will be a little lower, 

because even when UNIF-paŋ-NOUN doesn’t outrank NASSUB, occasionally *[root m/n/ŋ will do so).  

 Next we consider the input /maŋ-other+k ... /. We need a high substitution rate despite *[root 

ŋ’s objection. NASSUB can’t be responsible, because at six points below *[root ŋ, it is unlikely to 

outrank *[root ŋ. The only constraint besides NASSUB that favors substitution is *NC̥, so it must 

have a ranking value substantially higher than *[root ŋ’s (and also higher than UNIF-maŋ-’s, but 

this is ensured transitively by what we’ve already established). This is again shown in the 

grammar on the left in Figure 11. 

 

Figure 11<INSERT Figure 11 HERE> 

 

 But now we have predicted, incorrectly, that all nasal-substitution rates for /p/ and /k/ will 

be very close to 100%, because *NC̥ nearly always comes out as the top-ranked relevant 

constraint. The contradictory ranking fragment needed to fit voiceless consonants with the 

paŋ-noun prefix is shown on the right in Figure 11. We need UNIF-paŋ-NOUN to have a good chance 

of outranking both *NC̥ and NASSUB, which happens if we increase its ranking value to 103. 

(This yields a nasal-substitution rate of around 85% for /paŋ-noun+p ... /. We also have to promote 

*[root ŋ high enough to produce a lower rate for /paŋ-noun+k ... /, about 60%).  

Thus we have the probabilistic version of a ranking paradox: UNIF-paŋ-NOUN can’t be in 

two places at once. On the one hand, in the grammar on the left, its ranking value must be just a 

little above NASSUB’s (to model /paŋ-noun+b ... /), and NASSUB must be far below *NC̥ (to model 

/maŋ-other+k ... /)—but on the other hand, in the grammar on the right, its ranking value should be 

close to *NC̥’s, to model voiceless stops with paŋ-noun.  
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 To summarize, if we model complexity of the consonant dimension, using constraints 

that were previously proposed (Zuraw 2010) on cross-linguistic, language-internal, and phonetic 

grounds, Stochastic OT is not able to capture the quantitative pattern of Tagalog nasal 

substitution. In other words, the constraint set matters. With just the right constraints—in this 

case one for each consonant—it is possible to produce a family of sigmoids in Stochastic OT. 

MaxEnt and Noisy Harmonic Grammar, by contrast, produce a family of sigmoids regardless of 

constraint set. They are persistently sigmoidal, where StOT is only sporadically sigmoidal. If our 

three case studies are typical, this makes MaxEnt and Noisy HG more promising as quantitative 

models of constraint interaction. 

 

ANTTILIAN PARTIAL ORDERING. As in Stochastic OT, in Anttila’s theory of partial ordering 

(Anttila 1997a; Anttila 1997b), a grammar is a probability distribution over total rankings. The 

distribution is defined by a partial ordering of constraints. All total orderings that are consistent 

with that partial ordering are taken as equally probable. For example, if the grammar is the 

partial ordering A >> {B, C} >> D, then the total rankings A>>B>>C>>D and A>>C>>B>>D 

are each used 50% of the time. If those two rankings produce different output candidates, then 

each of those candidates is predicted to occur 50% of the time. 

 In the original research that established the theory, Anttila generally adhered to a more 

restrictive version of partial ordering in which the ordering is STRATIFIED (Boersma 2001): 

constraints within the same stratum are ranked freely, but rankings across strata are fixed.10 In 

the example just given there are three strata: top-ranked {A}, middle-ranked {B, C}, and bottom-

ranked {D}. We adopt stratification here because (unlike for partial ordering) there is an 

accessible learning procedure for stratified grammars.11 

 Specifically, stratified grammars can be learned using the GLA by setting the learning 

increment to a high number such as 20. This means that all constraints will either have the same 

ranking value (be in the same stratum) or be at least 20 units apart in ranking value, which is 

tantamount to an absolute ranking. As before, we ran the GLA 999 times and selected the 

grammar with the best fit to the data. That grammar is given in Table 4; it has seven strata. We 

also include ranking values from which the strata were inferred (these values have no status in 
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this theory, but were included to illustrate how this is a special case of a Stochastic OT 

grammar.) The grammar’s predictions are plotted in Figure 12. 

 

Table 4<INSERT Table 4 HERE> 

 

Figure 12<INSERT Figure 12 HERE> 

 

 

 For voiceless consonants p, t/s, k, the choice is made in the first stratum: if the prefix is 

paŋ-noun or paŋ-res, then there is a 50-50 competition between UNIFORMITY and *NC̥, with a 

resulting 50% rate of nasal substitution. For other morphology, *NC̥ prevails, and the 

substitution rate is 100%. As a result, there are no differences at all among voiceless consonants, 

and only two different rates of nasal substitution observed. 

The modeling of the voiced consonants is more successful, though only three classes of 

prefix are distinguished. Voiced consonants b, d, g have a zero rate of substitution for paŋ-noun 

and paŋ-res, chosen in Stratum 1. For g with other prefixes, the choice is made in the next stratum 

by *[root ŋ, yielding 0% substitution. For b, there is 50-50 competition in Stratum 3 for maŋ-RED-, 

and 100% substitution enforced by NASSUB at Stratum 3 for the remaining morphology. The 

most complex case is d, where there are two relevant constraints at Stratum 3 for most prefixes, 

producing 50-50 competition between NASSUB and *[root n/ŋ. But for maŋ-RED-, there are two 

constraints favoring non-substitution against one constraint favoring substitution; whichever 

constraint is ranked at the top will make the decision, and each has an equal probability of being 

ranked at the top, so the resulting substitution rate is 33%.  

In sum, the best stratified Anttilian model that could be learned was highly defective: it 

fails to distinguish the voiceless consonants from one another and it distinguishes at most three 

prefixes. We have not located ANY circumstances under which the Anttilian model is able to 

generate a family of sigmoids, although we cannot rule out the possibility that some such 

circumstances may exist. 

More generally, with our constraint set, it is not possible for substitution rates to converge 

towards 1 for /p/--that is, within the voiceless consonants, it is not possible for prefix differences 

to be smallest for /p/ and biggest for /k/. The prefix differences can be identical across the 
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voiceless consonants, as in the best model we found, or they can be largest for /p/ and smallest 

for /k/, if some or all of the *[root NASAL constraints are promoted into the top stratum.  

  

DECISION-TREE MODEL. Our next model is based on a radically different premise from the others: 

suppose that the Tagalog pattern is the consequence of sequenced MODULES, as in the classical 

feed-forward model of generative grammar. The modules themselves may well involve 

interacting constraints, but the two intersecting constraint families would reside in separate 

components. 

We can flesh out this idea as follows. A morphology/syntax module first probabilistically 

assigns structure, which is then fed into a phonology module. Schematically, the structures 

assigned would be [prefix [root]domain] contrasting with [prefix root]domain, with the details 

depending on the particular theoretical framework employed (see Gref 2008 for a concrete 

proposal for a cognate prefix). [prefix [root]domain] is a LOOSE structure (only the root is within a 

certain domain) and [prefix root]domain is a CLOSE structure (prefix and root are together in that 

domain).  

Let’s further suppose that if a word is assigned the loose structure, there is no possibility 

of nasal substitution in the phonological module—the prefix and stem fail to be together in nasal 

substitution’s domain of application—but if a word is assigned the close structure, then the 

phonology probabilistically decides whether to apply nasal substitution.  

We can describe this sequence of probabilistic choices using a DECISION TREE (Breiman 

et al. 1984), illustrated in Figure 13 for a hypothetical prefix and consonant. 

 

Figure 13<INSERT Figure 13 HERE> 

 

Assuming this tree, a novel word’s probability of undergoing nasal substitution is its probability 

of getting the close structure (which depends on the prefix), multiplied by its probability of then 

undergoing nasal substitution in the phonology (which depends on the consonant).  

 We implemented a decision-tree model of the Tagalog data. To give the model the 

benefit of the doubt, we allowed it to assign independent probabilities of substitution for each 

consonant, ignoring the general patterns based on voicing and place; the model also included a 

separate probability of close structure for each prefix. To obtain the best-fit probabilities, we 
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used the optim() function in R (R Core Team 2014), with the objective of maximizing likelihood 

(the probability that the model assigns to the observed data). The best-fit probabilities were as 

follows. 

 

Table 5<INSERT Table 5 HERE> 

 

 As Figure 14 shows, this model fit the data poorly. (Only four lines can be seen, because 

the top three prefixes were assigned identical probabilities of close structure.)  

 

Figure 14<INSERT Figure 14 HERE> 

 

 The model succeeds in having probabilities converge near zero at the right end of the 

consonant scale. This is because the fitted probability of substitution, given close structure, for 

/g/ is low, 0.01, imposing an upper limit on how often /g/ can undergo substitution: multiplying 

such a low number by even maŋ-other’s high probability of close structure (1.00) still results in a 

very small probability (0.01). But the model necessarily fails to achieve convergence near 1 at 

the left end of the consonant scale. The prefix paŋ-res. has the lowest probability of close 

structure, 0.27, so that no consonant can ever achieve a rate of substitution higher than 0.27 with 

that prefix. .Even though /p/’s probability of substitution, given close structure, is high (1.00), 

multiplying by 0.27 still results in a low probability (0.27). Multiplying two probabilities can 

never produce a probability larger than either of the two. Thus differences among prefixes 

become AMPLIFIED at the left end of the scale, rather than reduced towards 1 as in the observed 

data. 

 Because the decision-tree model cannot generate the desired family-of-sigmoids pattern, 

we conclude that this modular account is not plausible for Tagalog. Instead, the constraints that 

depend on the morphology and those that depend on the consonant must interact within a single 

module. We see this result as support for an emerging view that phonology and morphosyntax 

are not in a strictly modular, strictly feed-forward relationship (see Shih 2014 for novel data and 

arguments and a literature review). 
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2.7 COMPARISON OF MODELS. To summarize the results in this section, we give a quantitative 

comparison of the models’ fit to the Tagalog data in Table 6.12 To provide a baseline for 

comparison, we also include a PERFECT MODEL, which simply matches the observed probability 

of nasal substitution for each consonant/prefix combination. No model that discriminates only 

consonants, prefixes, and/or their combinations could perform better than this. Our measure of fit 

is log likelihood: we sum the natural-log probability that the model assigns to each data point. 

The closer to zero this value is, the more accurate the model. 

 

Table 6<INSERT Table 6 HERE> 

 

We include a column in Table 6 giving the number of free parameters in each model. All 

else being equal, the more free parameters a model has, the more able it is to fit a variety of data, 

and the less we should be impressed by its log likelihood. The four OT-based models all have 11 

free parameters (one weight or ranking value for each constraint); the decision tree has 12 (one 

probability for each consonant and one for each prefix); the ‘perfect’ model given for 

comparison simply lists the correct rate for each of the 36 cases (6 consonants times 6 prefixes). 

This is not a perfect measure of model complexity, because all else is NOT equal. For example, 

Stratified Partial Ordering has the same number of free parameters as Stochastic OT, but the 

values of those parameters are not as free, because they are constrained to be multiples of 20. 

Constraint structure can also matter: the straw-man model that we created in Table 3 with a 

separate constraint for each consonant (log likelihood: -269.55) has just 12 constraints—only one 

more than the other constraint models—but the model is far less constrained than its number of 

parameters suggests, because each consonant gets its own constraint rather than being subject to 

the same constraints as consonants that share its voicing or place. 

 

2.8 TAGALOG CONCLUSIONS. We have shown in this section that Tagalog nasal substitution 

requires a model where each dimension—consonant or prefix—has its main effect in the 

intermediate range of the other. At the extremes of each dimension, behavior hits a floor or 

ceiling. Graphically, this appears as a family of sigmoid curves. The two varieties of Harmonic 



27 
 

  

Grammar we examined, MaxEnt and Noisy Harmonic Grammar, succeed in capturing this 

pattern.  

 The other models we examined were far less successful. With the constraint set used, 

models based on strict ranking (Stochastic OT, partial ordering) failed to generate sigmoid curve 

families. With a different constraint set — abandoning crucial generalizations about voicing and 

place —Stochastic OT can succeed. Multiplying two probabilities, as in the decision tree model, 

cannot generate a sigmoid curve family. 

 The Tagalog case involves a morphological and a phonological dimension. In the 

remainder of the paper we examine two more cases: French liaison/élision, where morphosyntax 

interacts with lexical marking, and Hungarian vowel harmony, where purely phonological 

dimensions interact. 

 

3. FRENCH LIAISON/ELISION: LEXICAL MARKING VS. MORPHOSYNTAX. Our second case study 

examines two-word sequences in French, abbreviated Word1+Word2, where Word1, one of 

various function words or adjectives, has two allomorphs, chosen according to phonological and 

lexical properties of Word2. We examine the interaction pattern between constraints that 

distinguish the Word1s and constraints that distinguish the Word2s. Although this is well-plowed 

ground, we do make novel empirical claims about differences among Word1s. 

 

3.1 LIAISON AND ELISION. The alternations in Word1 are cases of French’s well-known liaison 

and elision phenomena. Some examples are shown in Table 7. The default allomorph of the 

Word1s under consideration ends in a vowel, and is used in citation form or when followed by a 

Word2 that begins with a consonant. When Word2 begins with a vowel, Word1 has a different 

allomorph that is consonant-final, either through addition of a final consonant (liaison13) or 

deletion of the final vowel (elision). 

 

Table 7<INSERT Table 7 HERE> 
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 This simplified, non-probabilistic description is easily captured in any of the grammar 

models discussed above for Tagalog, given suitable constraints. The challenge comes in 

capturing variation, which we will demonstrate below exists.  

 Before moving on, we give for reference the full list of Word1s whose two allomorphs 

are spelled differently, in Table 8. Because we use written data (discussed below), we cannot 

study any Word1s whose allomorphs are spelled the same, such as mon ‘my’-masc., which 

alternates between [mõ] and [mõn]. The Word1s are a variety of function words, and a small 

number of adjectives that, counter to the general pattern in French, can precede the noun. 

 

Table 8<INSERT Table 8 HERE> 

 

3.2 LEXICALLY SPECIFIC BEHAVIOR. Idiosyncratically, some vowel-initial Word2s take the 

preconsonantal allomorph of Word1. 

 
(17) Vowel-initial Word2s that behave as though consonant-initial 

la hache [la aʃ]  ‘the axe’ 

du haricot [dy aʁiko] ‘of the bean’ 

le uhlan [lə ylã]  ‘the uhlan (central/east European lancer)’ 

 

 Most of these words are spelled with an initial silent14 <h>, known as h aspiré (‘aspirated 

h’), and the word’s behavior is often a vestige of an earlier or foreign-language pronunciation 

that did have an initial consonant. Only a portion of words spelled with <h> behave this way; the 

rest behave as ordinary vowel-initial words. In keeping with the analysis to be adopted below, 

which relies on syllable alignment, we coin the term ALIGNANT to refer to words like those in 17, 

and NON-ALIGNANT to ordinary vowel-initial words. In brief, alignant words prefer to begin with 

a syllable boundary—that is, to be aligned at their beginning with a syllable boundary; one way 

to enforce this is to use the preconsonantal allomorph of Word1.  

 Words that begin with a glide likewise behave idiosyncratically as either alignant or non-

alignant in their choice of Word1. 

 

Table 9<INSERT Table 9 HERE> 
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3.3 PREVIOUS CLAIMS OF VARIATION. If a word begins with a vowel or glide, French speakers 

must memorize whether it behaves as alignant. Spelling is but an approximate guide: vowel-

initial words spelled with <h> can easily fall into either category, and a few alignant words are 

not spelled with <h>. Glide-initial alignant words tend to be spelled with <y> or <w> (rather 

than (h)i, (h)ou, etc.), but again the correlation is imperfect.  

It is not surprising, then, that there is widespread variation, as prescriptive grammarians 

and linguists have long noted. To avoid getting bogged down in examples and citations, we have 

placed them in the Appendix.  

Many authors have claimed that there is not only across-speaker disagreement as to 

lexical entries, but also intra-speaker variation. Most important for our purposes, however, are 

the numerous claims in the literature of tendencies for a given Word2 to behave differently 

depending on Word1 (again, see the appendix). For example, it has been claimed that oui ‘yes’ 

usually behaves as alignant, but tends to behave as non-alignant with que ‘that’. Generalizations 

about such differences are rare in the literature (e.g. claims about de in general vs. que in 

general), though we will claim below that such generalizations can be made. 

 The distinct behavior of different Word1s becomes particularly evident when a Word2 

changes its alignant status over time. The word hiatus ‘hiatus’ has shifted in recent decades from 

non-alignant to alignant. The plot in Figure 15 shows rates of use over time—as a percentage of 

all text—for le/l’+hiatus and de/d’+hiatus in the Google n-grams corpus using its visualization 

interface (see section 3.5).15 Alignant de hiatus overtakes d’hiatus around 1950, but le hiatus 

doesn’t overtake l’hiatus until about 1970. This is in line with our finding below that the Word1 

le is in general more likely than de to treat the following word as alignant. 

 

Figure 15<INSERT Figure 15 HERE> 
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3.4 ANALYTIC APPROACH. We will not attempt a full review of the extensive and long-running 

literature on lexical effects in French phrasal sandhi. The main approaches are, as surveyed by 

Tranel (1995), representational, diacritic, and prosodic; we will adopt a prosodic approach. 

In representational approaches, the lexical entry of an alignant word begins with some 

kind of consonant, such as an [h] or [Ɂ], that is deleted late (e.g. Schane 1968, Selkirk & 

Vergnaud 1973, Dell 1973, Schane 1978, and one option considered in Boersma 2007), or an 

empty consonantal slot (e.g. Clements & Keyser 1983). For example, ‘tree’, which behaves as a 

normal vowel-initial word, would have the lexical entry /aʁbʁ/, and so select l’, d’, and so on; but 

‘bean’ would be /haʁiko/, selecting le, de, and so on. Glide-initial words can be treated in the 

same way (alignants begin with /h/ or some other consonant, and non-alignants begin with an 

underlying high vowel, e.g. Martinet 1933), or by treating alignant words as beginning with an 

underlying glide and non-alignant as beginning with an underlying high vowel (e.g. Kaye & 

Lowenstamm 1984, Clements & Keyser 1983). 

 The motivation for employing an abstract consonant is that alignant words largely behave 

as though they were consonant-initial. However, several authors have pointed out that this is not 

entirely the case. The best-known challenge involves schwa/zero alternations (see appendix for 

full examples). Unlike either an ordinary consonant-initial word or an ordinary vowel-initial 

word, an alignant word optionally causes a schwa to appear before it (the schwa either is inserted 

or resists deletion, depending on the underlying form assumed): for example, alignant [ynə] 

hache ‘an axe’, vs. consonantal [yn] tache ‘a spot’ and non-alignant [yn] honnête femme ‘an 

honest woman’ (Grammont 1914: 124, Schane 1968, Selkirk 1972: 329, 379; Dell 1973: 84-93; 

Fouché 1956: 135-139; Grevisse & Goosse 2011: 55, 63). Tranel (1981) argues that there is an 

optional rule of schwa insertion. The representational analysis provides no explanation of why 

schwa insertion should occur, but as we will see, it is entirely expected under the alignment 

account. 

 Diacritic approaches mark alignant words as exceptionally undergoing, resisting, 

triggering, or not triggering rules. (e.g. [–LIAISON]). Tranel 1981 advocates diacritics because 

they provide the needed flexibility to mark some words as, for example, triggering liaison but not 

schwa insertion.. But this misses the overall bundling tendency of properties. Most crucially, the 

diacritic approach fails to capture the prosodic commonality of the rules in question, unlike the 

prosodic approach, to which we now turn. 
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 The prosodic approach has a long history (see Frei 1929, Damourette & Pichon 1930, 

Malmberg 1943 in Appendix). The key idea is that alignant words carry a requirement to begin 

with a syllable boundary. In the analysis developed below, alignant words are characterized by 

being subject to the alignment constraint ALIGN(Word, Left; Syllable, Left): the beginning of the 

word must also be the beginning of a syllable (Prince & Smolensky 1993/2004, McCarthy & 

Prince 1993). Tranel (1981: 299) discusses this possibility in pre-OT terms; OT analyses along 

these lines have been pursued by Tranel & Del Gobbo (2002) and Boersma (2007). 

 The prosodic approach has three benefits. First, as compared to the diacritic approach, it 

explains why liaison, elision, resyllabification, and schwa insertion strongly tend to pattern 

together. In essence, the prosodic approach substitutes a single diacritic—propensity to align—

for a set of independent diacritics. 

 Second, as compared to the representational (latent-consonant) approach, the prosodic 

approach explains why alignant words act as consonant-initial in most but not all respects. 

Acting as though consonant-initial by suppressing liaison maintains a syllable boundary before 

the word: beau hérisson [bo.e.ʁi.so ̃] vs. *bel hérisson [bɛ.le.ʁi.sõ] ‘nice hedgehog’; so does 

suppressing elision: le hérisson [lə.e.ʁi.sõ] vs. *l’hérisson [le.ʁi.sõ]. As Cornulier (1981: 184-

185) points out, glide formation is also suppressed before alignant words just as before 

consonants, as in qui hasarde [ki.a.zaʁd], rather than *[kja.zaʁd] ‘who hazards’, again 

maintaining the syllable boundary. Omitting schwa, however, as before a consonant-initial word, 

does not maintain a syllable boundary, as illustrated in 18: une hache ‘an axe’, if pronounced 

without a schwa, must violate either ALIGN or a prohibition on having a syllable boundary 

between a consonant and vowel, *C.V (see Tranel & Del Gobbo 2002). Including a schwa avoids 

both of these problems. There is thus a competition, leading to variation, among ALIGN, *C.V 

and DEP-ə/*ə (see Gabriel & Meisenburg 2009 for some data on this variation). 

 

(18) Optional schwa before alignant words 

<INSERT Tableau 18 HERE> 
 

 

 Another way that alignant words do not behave like normal consonant-initial words is a 

paradigm gap claimed by Cornulier (1981): a consonant-final prefix cannot combine with an 
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alignant stem: *ex-héros ‘ex-hero’, *mal-hanté ‘mis-haunted’, *super-hâlé ‘super-tanned’, *sur-

housse ‘over-cover’. Although tokens of some of these can be found on the web, Cornulier’s 

intuition of a gap presumably indicates that they are degraded. According to Cornulier, the 

reason for these gaps is the misalignment of morpheme boundary and syllable boundary. These 

prefixes freely combine, by contrast, with non-alignant and consonant-initial stems. 

 The third benefit of the prosodic approach, as compared to either the diacritic or the 

representational approaches, is that it ties in well with a set of observations scattered throughout 

the literature on ‘setting apart’ certain types of words in French (Ehrhard 1965, Gaatone 1978, 

and Cornulier 1981 draw together many of these observations; see the appendix for full examples 

and citations). First, any vowel-initial word can be treated as alignant when used 

metalinguistically, as in diminutif de aube ‘diminutive of dawn’ (Grevisse & Goosse 2011: 64). 

Second, archaic, technical, and foreign words have a greater tendency to be alignant. And third, 

short words—whose recognizability in running speech is under greater threat—are more likely to 

behave as alignant. The length effect also interacts with the other two factors. For example, 

metalinguistic uses and foreign words are especially likely to be alignant when monosyllabic. 

 To sum up these effects, there are various pragmatic or processing reasons for a word to 

need to be set apart—that is, to begin with a syllable boundary. What is special about alignant 

words is that they share this behavior as a pure lexical idiosyncrasy.16 Malmberg (1943: 44) 

writes, ‘The h aspiré is a sort of halt that one makes before certain words because one has once 

learned—at school or elsewhere—that they are dangerous and that one must be careful’. 

Thus, we follow earlier researchers in treating alignant words as subject to an alignment 

constraint. We go beyond this work in proposing that words occupy a spectrum from alignant to 

non-alignant, so that the strength of ALIGN differs word by word. To implement this, we break 

ALIGN into a small number of copies, with different strengths and associated to different sets of 

words, rather than giving each word its own constraint. We propose that phonological theories 

should incorporate a notion of LEXICAL PROPENSITY, defined as the affiliation of individual 

lexical items with particular copies of a constraint. The six copies of UNIFORMITY, used for 

different prefixes in Tagalog above, could likewise be seen as instances of (sub)lexical 

propensity. In a Word1+Word2 combination like le homard ‘the lobster’, Word1 will bear its 

own constraint (favoring citation form [lə]), and Word2 will be subject to one of the ALIGN 

constraints, reflecting its own propensity to align.17 
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We will not attempt to account for specific combinations with lexicalized behavior (see 

appendix)—they will have the effect of noise in our data—but we assume them to be listed as 

separate lexical entries. We assume that the child acquiring French begins by listing multi-word 

chunks such as fromage d’Hollande ‘type of cheese’ (cf. de Hollande ‘of Holland’, which shows 

that Hollande is typically non-alignant), and later begins to extract generalizations about each 

Word1 and Word2, but with lexicalized chunks still able to override productive combination. 

 

3.5 DATA. To investigate more systematically how alignancy behavior differs according to 

Word1 and Word2, we looked at a large set of potentially-varying Word2s. We used the Google 

n-grams corpus for French (Michel et al. 2011, Lin et al. 2012), which includes only sequences 

that occur at least 40 times in the Google Books corpus; we limited results to publications since 

1900. We identified 358 Word2s of interest in the corpus: words with identifiable part of speech 

and gender (through dictionary look-up); that occur in the corpus with two or more of our target 

Word1s (that are appropriate for Word2’s part of speech and gender); and are either spelled with 

initial <h>, pronounced as glide-initial, or listed in dictionary and other prescriptive sources as 

alignant or varying. 

 To get a general feel for the data, we first plot a histogram of the mean rate at which each 

Word2 behaves as non-alignant (averaging over all the Word1s that it happens to occur with). 

Although rates cluster near 0 and 1, a healthy number of Word2s falls somewhere in between. 

 

Figure 16<INSERT Figure 16 HERE> 

 

 The challenge for plotting Word1+Word2 behavior by Word2’s degree of alignancy is 

that the degree to which a Word2 is alignant can only be observed empirically; there is no a 

priori way to determine it. To assign each Word2 an empirical degree of alignancy, we fitted a 

mixed-effects logistic regression model (using function glmer() from package lme4 (Bates et al. 

2014) in R (R Core Team 2014). Each observation is a Word1+Word2 sequence; the dependent 

variable is the rate at which Word1 in that sequence undergoes liaison/elision (i.e. behaves as 

though Word2 is non-alignant). Only the best-attested and least-problematic Word1s were used: 

au/à l’, la/l’, de/d’, le/l’, du/de l’, beau/bel, vieux/vieil, ma/mon. The independent variables are 
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the identity of Word1 and the log frequency of the Word1+Word2 combination, and each Word2 

receives a random intercept. It is unusual to use logistic regression with a dependent variable that 

is a rate ranging from 0 to 1 (although these rates do cluster strongly around 0 and 1), but the 

more usual approach, treating each token as an observation with an outcome of aligned or non-

aligned, produced models that failed to converge. For comparison, we also performed beta 

regression (in SAS with the GLIMMIX procedure [SAS Institute Inc 2014], to allow random 

effects, as this was not available in R), and results were quite similar. 

 Following Fruehwald (2012), we treat the random intercept that the model assigns to each 

Word2 as an index of its alignment propensity; positive is non-alignant and negative is alignant. 

Examples for one slice of the alphabet are given in Table 10, along with, for comparison, each 

word’s normative category and its rate of non-alignant behavior averaged across all Word1s that 

it happens to occur with. 

 

Table 10<INSERT Table 10 HERE> 

  

This single measure of a Word2’s propensity to behave as non-alignant collapses possible 

phonological sources of Word2 differences, such as vowel quality; non-phonological systematic 

sources, such as propensity for metalinguistic use; and true item-specific idiosyncrasy. 

For the Word1 dimension, we examine the results of the regression model to compare 

Word1s’ tendencies to appear in their preconsonantal/isolation allomorph. Post-hoc pairwise 

comparisons on the two regression models find three groups of significantly different Word1s: 

beau/bel, ma/mon, and vieux/vieil, with the highest non-alignment rates; . du/de and le/l’ with the 

lowest, and au/à l’, de/d’, and la/l’ in the middle.18 We are agnostic on why Word1 differences 

should exist, but we speculate they arise from a variety of sources: syntactic closeness of Word1 

and Word2, degree to which Word1+X tends to be a lexicalized unit, and each Word1’s arbitrary, 

idiosyncratic tendency to appear in its citation form versus in its elision or liaison form. Our 

constraint model below will subsume any syntactic or processing systematicity under each 

Word1’s individual tendency towards non-alignant behavior. 

We now have, just as in Tagalog, two cross-cutting dimensions: Word2 alignancy and 

Word1 identity. We combine the Word1s into three groups according to their coefficients in the 

regression model (high, medium, and low), as discussed above. We divide the Word2s into five 
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groups of equal size, along the alignancy continuum, using their random intercepts in the 

regression model. This grouping facilitates interpretation by providing a reasonable number of 

items in each Word1-group/Word2-group combination. (Two bins are fairly small, with 9 and 18 

items, but the rest are more robust, ranging from 33 to 172 items.) We plot alignment propensity 

across these two dimensions, as in Figure 17. 

 

Figure 17<INSERT Figure 44 HERE> 

 

Although the differences among Word1s in French are smaller than the differences 

among prefixes in Tagalog, we see the same basic pattern. At extreme values of Word2 

alignancy (1 and 5), Word1 differences disappear: all items hit a floor or ceiling; but in between, 

Word1 differences are substantial, from about 20% non-alignant behavior to 80% for the middle 

group of Word2s. Because the Word1 differences are small, and we see only minor floor and 

ceiling effects in this dimension: the difference between the two lowest Word2 alignancy 

categories, 1 and 2, is smaller for the lower two Word1 categories, B and C, than for the highest 

category, A, suggesting a floor effect for B and C; and the difference between Word2 categories 

4 and 5 is greater for the lowest Word1 category, C than for A and B, suggesting a ceiling effect 

for A and B. 

 

3.6 CONSTRAINTS FOR OT-BASED MODELING. Our constraint models all use the same constraint 

set, listed in Table 11. There is just one constraint encouraging élision/liaison (NOHIATUS). The 

rest encourage the citation form of Word1, either directly (the Word1 family USEAU, etc.) or 

indirectly (the Word2 family ALIGN). That is, both constraint families favor alignment, and they 

work against a single constraint that applies in all cases. 

 

Table 11<INSERT Table 11 HERE> 

 

 We illustrate how these constraints work with two tableaux that abstract away from 

variation: one for a regular, non-alignant word (hiver), and one for an alignant word (hibou). 
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(19) Illustration of analysis for l’hiver ‘the winter’ and le hibou ‘the owl’ 

<INSERT Tableau 19 HERE> 
 

 

3.7 MAXIMUM ENTROPY MODEL AND NOISY HARMONIC GRAMMAR MODEL. As in Tagalog, the 

two models based on constraint weighting produce very similar results. Weights are shown in 

Table 12. 

 

Table 12<INSERT Table 12 HERE> 

 

Both grammars do a good job of capturing the sigmoid shape of the data (and produce nearly 

identical predictions), with rates converging at 0 and 1 for the extreme Word2 groups, and 

maximal Word1 differences for the medial Word2 group, as shown in Figure 18 and Figure 19. 

 

Figure 18<INSERT Figure 18 HERE> 

 

 

Figure 19<INSERT Figure 19 HERE> 

 

  

3.8 STOCHASTIC OT MODEL. As in Tagalog, to give the GLA a better chance of finding the best 

StOT grammar, we ran it 999 times with the Magri update rule and 999 times with the standard, 

symmetrical update rule, and chose from that set the grammar with the best log likelihood. The 

best model overall here was one fitted with the standard update rule; its ranking values are listed 

in Table 13. The large differences in ranking values (e.g. -344.23 vs. -34.52, for the two lowest-

ranked constraint, or 90.67 vs. the next value up, 181.11) indicate a failure to converge.  

 

Table 13<INSERT Table 13 HERE> 
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 As shown in Figure 20, the model does a poor job of capturing Word1 differences. For 

Word1 groups 1-2, the ALIGN constraints practically always outrank NOHIATUS and the USE 

constraints. For group 3, there is a real competition between ALIGN—group3 (ranking value 188) 

and NOHIATUS (187), leading to a substantial rate of non-alignant behavior, but none of the USE 

constraints has a high enough ranking value to compete seriously with ALIGN—group3, so there 

are no Word1 differences. In group 5, ALIGN—group5 is out of the picture (-344), so the 

decision depends on the ranking of NOHIATUS versus the USE constraints; the USE constraints 

from group C provide NOHIATUS with some competition, but there is hardly any difference 

between the A and B groups (which is why only two traces are clearly visible; A’s and B’s traces 

are nearly superimposed), because all of their USE constraints are ranked too low to compete 

with NOHIATUS. 

 

Figure 20<INSERT Figure 20 HERE> 

 

WHY DOES STOCHASTIC OT FAIL FOR FRENCH? In Tagalog, we argued that Stochastic OT fails 

because of the phonologically-motivated internal structure of the constraint set. In French, the 

problem is much more fundamental: the Word1 and Word2 constraint families are SYNERGISTIC, 

both favoring the same candidate (e.g. la hache), because it preserves both the citation form of 

Word1 and syllable alignment for Word2. The only constraint favoring the other candidate 

(l’hache) is NOHIATUS. 

 Our straw-man grammar for Tagalog in Table 3, where each consonant had its own 

constraint, was ANTAGONISTIC: the consonants’ constraints favored nasal substitution and the 

prefixes’ constraints penalized it. (Our actual grammar for Tagalog is nearly synergistic: the 

prefix constraints all penalize nasal substitution, and so do most of the consonant constraints. But 

one member of the consonant family, *NC̥, favors substitution.) 

 In unpublished work, Giorgio Magri (p.c.) has proven a property of all grammars of this 

type, that is, with two synergistic constraint families that are simple (in the sense that for each 

input, exactly one constraint from each family is applicable) and one opposing constraint. He 

shows that in such cases, the frequency patterns generated in Stochastic OT will be uniformly 

converging in one direction and diverging in the other. We saw this for French in Figure 20, 
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where Word1 differences, though always small, grow monotonically towards the right of the 

plot, instead of being largest for the middle alignment groups.  

 To understand this result, we can think of generation in Stochastic OT as a race between 

constraints that prefer each candidate. In the French case, there are three runners: the anti-

alignment team consists of just NOHIATUS, who runs in every trial, and the pro-alignment team 

sends one ALIGN constraint and one USE constraint. Whoever crosses the finish line first wins the 

race for their team. If the ALIGN constraint is a fast runner and will probably finish first (as on 

the left side of Figure 20, where ALIGN—group 1 prevents non-alignment), then it matters little 

how fast its USE teammate is. The slower ALIGN is, the more it matters which USE constraint is 

running, because USE bears more responsibility for winning the race. Crucially, this pattern is 

monotonic: as we move rightwards along the alignment axis in figure Figure 20, to weaker 

ALIGN constraints, all Word1 differences become (asymptotically) greater. 

 By contrast, Harmonic Grammar is like a tug-of-war: NOHIATUS pulls the rope in one 

direction, and an ALIGN constraint and a USE constraint team up to pull it in the other. If ALIGN 

is strong enough (like ALIGN—group 1) to reliably overpower NOHIATUS on its own, then it 

matters little which USE constraint is helping it—the help is not needed. If ALIGN is similar in 

strength to NOHIATUS (ALIGN—group 3), then even small differences between weak USE 

constraints greatly affect the outcome. But unlike in Stochastic OT, for the weakest ALIGN 

constraints (ALIGN—group 5), USE differences can decrease again. This will happen when the 

USE constraints being compared are both substantially weaker than NOHIATUS: without a good 

boost from ALIGN to move the ALIGN/USE team into competitive territory, the team loses to 

NOHIATUS nearly all the time anyway. The sigmoid curve families that we saw in Figure 18 and 

Figure 19—which successfully match the data—are the result. 

 

3.9 ANTTILIAN PARTIAL ORDERING MODEL. As we did for Tagalog, we used the multiple-run 

technique to identify the best out of 999 Partially Ordered (stratified) OT grammars, by training 

the GLA but forcing ranking values to remain at least 20 units apart. Because the set of possible 

stratified grammars is a strict subset of the set of possible StOT grammars, we expect the best 



39 
 

  

stratified model to be a poorer fit than the best StOT grammar, but we can still assess its 

qualitative fit to the data. 

 The best stratified model is shown in Table 14. Although the lower strata appear 

puzzling—the Word1s are out of order—this is because the rankings of the strata in which the 

USE constraints appear never matter. For Word2s of groups 1 and 2, the decision to be alignant is 

made by the first stratum (0% non-alignant behavior). For groups 3 and 4, the decision is made 

in the second stratum by the ranking of ALIGN and NOHIATUS (50% non-alignant). For group 5, 

the decision is made in whatever stratum the relevant USE constraint occurs (100% non-

alignant)—that is, the USE constraints could all be placed in the same stratum, and there would 

be no change in the grammar’s behavior. There is thus no opportunity for Word1 differences to 

manifest. 

 

Table 14<INSERT Table 14 HERE> 

 

The plot of model predictions, in Figure 21, illustrates this lack of Word1 effects; only 

one trace is visible, because all Word1s behave the same. 

 

Figure 21<INSERT Figure 21 HERE> 

 

 

3.10 DECISION TREE MODEL. A decision-tree model is conceptually attractive here, as it was in 

Tagalog: let the morphosyntax give each Word1 a probability of creating either a loose or a close 

syntactic or prosodic configuration: [Word1]domain [Word2]domain (loose) or [Word1 Word2]domain 

(close). The loose structure does not allow liaison or élision—alignment is always respected. In 

the close structure, non-alignment is possible. Let the phonology give each Word2 a probability 

of triggering liaison or élision if in the close structure. The probability of a Word1+Word2 

combination behaving as non-alignant is then the product of two probabilities: the probability 

that Word1 triggers a close structure and the probability that Word2 triggers liaison or élision. 

A decision-tree model was fitted using the optim() function in R, maximizing likelihood. 

The fitted component probabilities are in Table 15, and the result is plotted in Figure 22. For the 

same reasons as in Tagalog, a decision tree fares poorly: it can capture the ‘pinch’ at one end of 
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the scale—in this case, a very low non-alignancy probability for Group 1, as desired—but it 

predicts that rates will spread out (and only slightly) at the other end (Group 5), rather than in the 

middle. It is possible to create a decision tree in which the Word1s spread out more towards the 

right of the plot (though the resulting likelihood is lower), by giving the Word1s a greater variety 

of close-structure probabilities. But it is not possible to achieve the greatest Word1 

differentiation at intermediate values of Word2. Differences between Word1s are best preserved 

when Word2 has the non-alignment probability, 1—that is, at the right end of the plot.  

 

Table 15<INSERT Table 15 HERE> 

 

Figure 22<INSERT Figure 22 HERE> 

 

 

3.11 COMPARISON OF MODELS. In Table 16, we compare the log likelihoods of the models. 

MaxEnt and Noisy HG achieve similarly good fits, and the rest do less well. As a baseline, we 

again include the log likelihood for a hypothetical model that achieves perfect frequency 

matching for each combination of Word1 and Word2-group. 

 

Table 16<INSERT Table 16 HERE> 

 

3.12 FRENCH CONCLUSIONS. French involves an interaction between a lexical propensity 

(Word2’s propensity to behave as alignant) and unknown morphosyntactic factors or lexical 

propensities (Word1’s propensity to behave as though Word2 is alignant). These two dimensions 

interact in a pattern correctly modeled by Harmonic Grammar, as either MaxEnt or Noisy HG: at 

high and low levels of Word2’s scale, rates stick to the floor or ceiling; at intermediate levels of 

Word2’s scale, Word1 has its greatest effects. A decision-tree model fails to capture this basic 

pattern, as do models employing probability distributions over strict-ranking OT (Stochastic OT 

and Stratified Partial Ordering OT) We showed that the failure of Stochastic OT is a general 
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result for any analysis in which the two intersecting constraint families (here ALIGN constraints 

and USE constraints) favor the same candidate. 

 

4. HUNGARIAN VOWEL HARMONY: PHONOLOGY VS. PHONOLOGY. In our third example, 

Hungarian vowel harmony, we introduce two further elements. First, the intersecting constraint 

families are both phonological: one family concerns the stem’s vowel pattern, and the other 

concerns its final consonants. Second, for Hungarian we have not just corpus data, but 

experimental data to support the psychological reality of the patterns observed in the lexicon. 

 

4.1 THE DATA: VOWEL AND CONSONANT EFFECTS AND THEIR INTERSECTION. We have written on 

Hungarian vowel harmony before (Hayes et al. 2009) and will rely heavily on that material, as 

well as on the extensive earlier analytic literature cited therein. As in that article, we rely on the 

dative suffix, which has allomorphs back –nak ([nɔk]) and front –nek ([nɛk]). 

Backness harmony in Hungarian is largely predictable according to whether the stem’s 

vowels are back (B), front rounded (F), or front unrounded (N, for neutral). Stems whose last 

vowel is B take back suffixes ([biːroː-nɔk] ‘judge-DAT’); stems whose last vowel is F take front 

suffixes ([sεmølt-nεk] ‘wart-DAT’); and some other stem types19 also invariably take front 

suffixes. Stems that end in a sequence BN or BNN show variation driven by the conflict between 

the local, phonetically front trigger N and the distal back trigger B ([hɔvɛr-nɔk] ‘pal-DAT’, 

[koːdɛks-nɛk] ‘codex-DAT’, [boheːm-nɔk] ~ [boheːm-nεk] ‘easy-going-DAT’). There is also a fair 

amount of variation in monosyllabic stems with a neutral vowel (N) ([tsiːm-nɛk] ‘address-DAT’, 

[hiːd-nɔk] ‘bridge-DAT’).  

Among the stem types that vary, we observe two vowel-driven tendencies: the Height 

Effect (Hayes et al. 2009: 831), where stems ending in [ɛ] take front suffixes more often than 

stems ending in [eː], which take front suffixes more often than stems ending in [i] or [iː]; and the 

Count Effect (Hayes et al. 2009: 830), where BNN stems, having two Ns as front triggers, take 

front suffixes more often than BN stems. 

Surprisingly, there are also tendencies driven by the stem’s final consonants (Hayes et al. 

2009: 836). There are four factors that favor front harmony, given in 20. 
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(20) Consonant environments favoring front-voweled suffixes in Hungarian  

a. final bilabial noncontinuant ([p, b, m]) 

b. final sibilant ([s, z, ʃ, ʒ, ts, tʃ, dʒ]) 

c. final coronal sonorant ([n, ɲ, l, r]) 

d. final two-consonant cluster 

 

There is little reason to think that these patterns have any sensible basis in the theory of 

markedness (phonetic or otherwise), but they do hold true at a statistically significant level in the 

Hungarian lexicon (Hayes et al. 2009: 839). 

To examine the interaction of these two dimensions—vowel pattern and final 

consonants—we sort the data in a way not employed in Hayes et al. 2009, according to the 

number of final-consonant factors present: zero (fails to match any of the environments of20); 

one (matches one of a, b, c, or d in 20), and two (d plus one of a, b, or c).20 

In Figure 23, we plot the rate, averaged over stems, at which stems take the back suffix 

allomorph for each vowel pattern and each number of final-consonant properties present, using 

the same web data as in Hayes et al. 2009. (The data come from 8,915 stems.) The consonant 

factors show consistent effects within each vowel category: the highest backness rates are found 

when zero consonant factors are present, and the lowest when two consonant factors are present. 

We also see the familiar floor and ceiling effects, with backness rates converging to 1 for B 

stems and to 0 for F stems.  

 

Figure 23<INSERT Figure 23 HERE> 

 

 

Hayes et al. 2009 used a survey to test nonce BN, BNN, and N stems, and the results, 

plotted in Figure 24, support the productivity of both the vowel and the consonant effects, and 

show rates starting to converge to zero for N. (The data come from 1,703 trials and 1,602 distinct 

stems). The experiment was designed to test vowel patterns expected to show appreciable 

variation, with no items of the type B, NN, F, and so on. Therefore Figure 24 shows no data for 

the extremes of the scale. Earlier nonce probe testing (Hayes & Londe 2006: 71) showed that 

experimental participants essentially treat B as invariantly back and NN and F as invariantly 
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front; we assume that including these patterns in Figure 24 would complete the familiar sigmoid 

curve family seen earlier for Tagalog and French. The overall rate of taking the back suffix is 

shifted lower in the nonce-word data as compared to the lexicon (perhaps because, in the lexicon, 

lower-frequency words tend to take more front suffixes, and nonce words are the lowest-

frequency words of all, Hayes et al. 2009:  830). While in the lexicon backness rates are close to 

ceiling for Bi words, in the nonce-word data we can observe the effect of final-consonant 

properties among Bi words. Conversely, in the lexicon final-consonant properties have a 

noticeable effect within N words, but in the nonce words rates are already close to the floor. 

Overall, the nonce-word data show that the effects of stem vowel and final consonant carry over 

to novel items. 

 

Figure 24<INSERT Figure 24 HERE> 

 

 

4.2 HUNGARIAN MODELING: CONSTRAINTS EMPLOYED. The constraints used in the models to 

follow are taken directly from Hayes et al. 2009 and shown in Table 17; for detailed discussion 

of the constraints and their rationale, see Hayes et al. 2009: 834, 836. 

 

Table 17<INSERT Table 17 HERE> 

 

 There is some overlapping structure within each family. Within the consonant family, it 

is possible for both CLUSTER and one of the other three constraints to apply. Within the vowel 

family, more than one AGREE constraint can apply, especially when the stem ends in a front, 

unrounded vowel. When the MONOSYLL-[iː] constraint (which is a member of the vowel family 

because it depends on stem vowels) applies, AGREE(front, local) will also apply. In terms of the 

synergistic/antagonistic distinction introduced in section 3.8, Hungarian is a mixed case. All of 

the constraints in the consonant family favor the front suffix, and so do most of the constraints in 

the vowel family, but two of the vowel constraints favor the back suffix. 
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4.3 HARMONIC GRAMMAR MODELS: MAXENT AND NHG. Once again, the two constraint-

weighting models produce very similar results. Weights are shown in Table 18, and model 

predictions for lexical items and nonce probes are shown in Figure 25 and Figure 26. Both 

models capture the basic pattern: rates of taking –nak converge at 100% for B stems, and at 0% 

for NN and ‘other’ (NNN, BNNN, F, FN, FNN, FNNN), while in the intermediate categories, the 

consonantal properties show their influence. 

 The model predictions plotted are for the actual lexicon or wug stems found in each 

category, allowing comparison to the observed data plotted above. For example, the Bi stems in 

the lexicon with two final-consonant properties bear a mix of consonantal properties: they all end 

in a consonant cluster, but some also end in a bilabial, others in a sibilant, and others in a coronal 

sonorant. This mix is a little different for the Bi stems in the lexicon than for the Bi wug stems, 

and thus the model’s predictions averaged over those two mixes are a little different. (There is no 

prediction shown for Be lexical data with two consonant properties, because there are no real 

words in the lexicon of this type.) 

 

Table 18<INSERT Table 18 HERE> 

 

Figure 25<INSERT Figure 25 HERE> 

 
Figure 26<INSERT Figure 26 HERE> 

 

4.4 STOCHASTIC OT MODELS. As in the Tagalog and French cases, we fitted 999 Stochastic OT 

grammars with the standard update rule, and 999 with the Magri update rule, and chose the 

grammar that was the best fit to the lexical data that it was trained on (in this case one found with 

the standard update rule). The ranking values are shown in Table 19. The extremely low ranking 

of one constraint indicates that the learner failed to converge. 

 

Table 19<INSERT  Table 19 HERE> 

 

 The grammar’s predictions for the lexical and nonce-probe data are shown in Figure 27. 

While some aspects of the pattern are captured—overall higher backness rates on the left sides of 
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the plots; overall higher backness rates when fewer final-consonant properties hold—the 

grammar incorrectly predicts that final-consonant effects are wiped out completely in the Bɛ 

category, and backness rates do not quite fall to 0 for the ‘other’ category. 

 

Figure 27<INSERT Figure 27 HERE> 

 
 Why does the Stochastic OT grammar fail? In the Bɛ category, there is one constraint 

favoring –nak (AGREE(back, nonlocal)), and two or more favoring –nek (AGREE(low front, 

local), AGREE(non-high front, local), and, if applicable, BILABIAL, CLUSTER, SIBILANT, and 

CORSON). Whichever of these constraints is top-ranked—usually AGREE(low front, local)—

determines the outcome on each trial. The strongest consonantal constraint, BILABIAL, will be 

top-ranked about 5% of time, which at first seems often enough to matter. But, even when 

BILABIAL is the top-ranked constraint, the second-ranked constraint is nearly always (about 95% 

of the time) AGREE(low front, local), meaning that it actually doesn’t matter whether the stem 

ends in a bilabial consonant or not: if it does, BILABIAL will choose –nek, and if it doesn’t, 

AGREE(low front, local) will also choose –nek. It is only in the approximately 0.5% of cases that 

BILABIAL ranks first, followed by AGREE(back, nonlocal), that it actually matters whether the 

stem ends in a bilabial consonant. The situation is even starker for the other, weaker consonantal 

constraints. As in Tagalog and French, we have a soft ranking paradox: to assure low rates 

of -nak for Bɛ overall, the ranking-value gap between AGREE(low front, local) and AGREE(back, 

nonlocal) has to be fairly large; but for the consonantal constraints to make a difference, that gap 

would have to narrow.  

The StOT grammar’s more minor failing, having appreciably non-zero –nak rates for 

some of the ‘other’ stems, is due to the BNNN stems in this category. Adding -nak to these stems 

results in two violations of AGREE(double front, local). In the Harmonic Grammar models, each 

violation contributes to the BNNN-nak’s harmony score, pushing its probability very close to 

zero. But in the Stochastic OT models, BNNN behaves no differently from BNN—the ranking of 

AGREE(double front, local) is important, but not its number of violations (the competition, for 

both BNN and BNNN, is always between a candidate that fully satisfies AGREE(double front, 

local) and one that violates it, whether once or twice). This does not reflect any general failing of 
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StOT, because the problem could easily be addressed with a constraint like AGREE(triple front, 

local) that is violated by BNNN-nak but not BNN-nak. 

 

4.5 PARTIAL-RANKING MODEL. As for Tagalog and French, we approximated a partial-ranking 

model by running the Gradual Learning Algorithm on the lexical data, using a plasticity of 20, so 

that all rankings are effectively strict. We did this 999 times and chose the grammar that best fit 

the lexical data it was trained on. The resulting grammar is shown in Table 20. 

 

Table 20<INSERT Table 20 HERE> 

 

 

As illustrated in Figure 28, the grammar allows little scope for the consonantal properties 

to affect backness rates. B words correctly have their fate decided in Stratum 2 and always take 

the back suffix. Bi words’ fate is decided in Stratum 3, again always in favor of backness. Be 

words are subject to 50-50 competition between two constraints in Stratum 3. Bɛ words are 

assigned a 0% backness rate in Stratum 2. In none of these cases do the consonantal constraints 

come into play. BNN words are more complex. If the final vowel is low, they are never back 

(Stratum 2); if the final vowel is mid, all three constraints of Stratum 3 are relevant, and the 

back-favoring constraint AGREE(back, nonlocal) has a 1/3 chance of choosing the back suffix; if 

the final vowel is high then there is a 50-50 competition in Stratum 3. The apparent variety of 

rates seen in the plot for lexical BNN results from this variety of final N heights, not from 

consonantal effects; in the wug data, on the other hand, N heights were balanced, so there is no 

spurious consonantal effect predicted.  

N words that are not monosyllables with [iː] have no constraints favoring backness. 

Those that are monosyllables with [iː] finally show some consonantal effects: if BILABIAL, 

CLUSTER, or SIBILANT is relevant, backness rate will be zero. If none of these three is relevant but 

CORSON is, there will be 50-50 competition in Stratum 6. And if none of the consonantal 

properties hold, backness will be 100%. NN words, and NN and NNNN (grouped under other) 

have a predicted backness rate of zero. The variety seen within the ‘other’ category comes from 

BNNN words, subject to the same constraints as BNN words. 
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Figure 28<INSERT Figure 28 HERE> 

 

4.6 COMPARISON OF MODELS. We summarize the models’ performance quantitatively in Table 

21. As before, we used a backoff of 1/100,000 for predicted probabilities of 0 or 1 that were 

generated by the non-MaxEnt models. As mentioned at the beginning of this section, we do not 

include a decision-tree model, because all of the constraints in the Hungarian analysis are purely 

phonological. In the Tagalog and French cases it was plausible for a morphosyntactic component 

to feed into a phonological component—with probabilistic decisions being made within each 

component—but here the constraints must all interact within a single component. 

 

Table 21<INSERT Table 21 HERE> 

 

 For all models, the fit to the wug data is worse—even more so in terms of average log 

likelihood per stem. The reason is that log likelihood is most hurt at intermediate rates, and the 

wug data, by design, are rich in stems with intermediate backness rates.  

 

4.7 HUNGARIAN CONCLUSIONS. The special aspects of the Hungarian study are as follows. First, 

Hungarian is a case in which the two intersecting constraint families are both phonological, but 

the overall data pattern is the same: we find that backness rates for consonant category converge 

at the extremes of the vowel categories. This is best matched with some version of Harmonic 

Grammar. Second, unlike in the other cases, we have wug-test data to validate the psychological 

reality of both dimensions of the lexical pattern. 

 

5. CONCLUSION. In this work, we compared competing frameworks of stochastic grammar by 

examining how they handle the problem of intersecting constraint families. We did this by 

finding appropriate examples in which the data are analyzable with intersecting constraint 

families, and large enough corpora are available.  

 Figure 4, Figure 17, and Figure 23  give the essential pattern of floor and ceiling effects, 

where differences in one constraint family are seen only at medial values of the other. As we 

showed, this qualitative pattern is a direct prediction of Harmonic Grammar, in either of its 
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stochastic versions (MaxEnt or Noisy HG). Floor and ceiling effects result when the influence of 

one family is so strong that the other family makes no difference. Distinctions made in the 

medial region result from the addition of constraint weights that is at the core of this approach. 

 Other theories were far less successful. The decision-tree theory (§2.6, §3.10) derives not 

parallel sigmoids but ‘claws’ (Figure 14, Figure 22), with pinching at only one end of the range. 

Stochastic Optimality Theory can partially derive the crucial pattern in one case (Hungarian), but 

for Tagalog and French it fails (Figure 9, Figure 20). In the case of Tagalog, the failure arises 

from a language-specific ranking paradox (§2.6). In French, the failure is more general: Magri’s 

theorem shows that convergence at both ends of one dimension cannot be obtained with simple, 

synergistic constraint families (§3.8). The version of Partial Ordering examined here offers a 

small subset of the grammars available under Stochastic OT, and thus suffers from the same 

limitations. In addition, the coarseness of the model leads it to collapse distinctions more often 

than the others. 

 We conclude that if these three case studies are representative, Harmonic Grammar has 

the empirical advantage over other constraint models of variation. Results for Noisy HG and 

MaxEnt were too similar for us to say which flavor of probabilistic Harmonic Grammar captures 

the data better. 

 We comment briefly on the generality of our claim. An assumption of both Noisy HG 

and MaxEnt is that ALL grammatical phenomena are to be derived with weighted constraints: the 

theory is not some kind of patch on a basically non-stochastic theory of grammar; rather, non-

gradient behavior is simply the limiting case that arises when unanimous acquisition data result 

in extreme weights. Likewise, we do not think it likely that weighted constraints govern only 

some parts of the grammar; the research tradition arising from Kroch’s pioneering work on 

syntactic change (1989, 2001) suggests that that the sigmoid curves derived by MaxEnt and 

NHG models are likely to arise in syntax as well. 

 A subsidiary finding of our research was the existence of LEXICAL PROPENSITY (first 

introduced in section 3.4): the continuous, not categorical, tendency of a lexical item to behave in 

a particular phonological way—for example, to require a preceding syllable boundary or not. 

Lexical propensity was treated in classical generative phonology through binary approximations, 

using diacritics or abstract representations (ghost consonants, floating autosegments, etc.). 

Examining large corpora indicates that such treatment is insufficiently nuanced: it predicts all-or-
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nothing variation across stems rather than the gradient patterns we found for Tagalog prefixes 

and French Word2. To better fit the data, we have encoded lexical propensity as a range of 

lexically specific constraint weights in Harmonic Grammar. 

 As a direction for future research, we suggest that psycholinguistic testing of the 

generalizations for their productivity, beyond what we have already done for Hungarian. Our 

corpora do represent real language use rather than laboratory data, but they are the result of 

folding together the speech of a great number of individuals.  
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Appendix: evidence on French from the literature 

 

CLAIMS THAT THERE IS VARIATION 

• Encrevé (1988: 199) observes that the lists of alignant words in four prescriptive sources ‘are 

far from agreeing—and far from agreeing with what one hears’.21  

• Dubroca's (1824: 150) pronunciation manual justifies a supplemental chapter on h-initial 

words as follows: ‘Errors are so frequent and so crude in this respect; there are so few men 

who have sure principles on it’.  

• Fouché (1956: 258-265), in a prescriptive manual, notes variation (‘flottement’) for several 

categories of proper names and loans, as well as hyène ‘hyena’.  

• Grevisse and Goosse (2011: 56), in a widely used prescriptive manual, note that ‘popular 

speech barely respects disjunction [i.e. lack of liaison or elision] before h aspiré’ and that 

‘lapses have slipped by authors’. They note cases of: 

� prescriptively non-alignant words that are often treated as alignant (e.g. hameçon 

‘hook’), and vice versa (e.g. handicap);  

� ‘hesitation’ and ‘confusion’, especially in foreign names.  

� published contradictions, including a dictionary that lists holisme ‘holism’ as non-

alignant, but uses du holisme in that very entry.  

• Lively discussions can be found on French-language internet forums as to whether a given 

word is alignant (e.g. Haïtien ‘Haitian’ and haricot ‘bean’). 

CLAIMS THAT THERE IS INTRA-SPEAKER VARIATION 

• Cohen (1963: 140) cites a government flyer that includes, just two paragraphs apart, both de 

un mois and d’un mois ‘of one month’. 

• Cohen (1963: 140) also cites a well-regarded history manual that varies between de Henri IV 

and d’Henri IV ‘of Henry IV’.  

• Grevisse and Goosse (2011: 57-63) note several examples of variation within an individual 

author.  

• Cornulier (1981: 203) claims that ‘a sentence containing both de Hugo and d’Hugo [‘of 

Hugo’] would not be remarkable in conversation’.  
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• Cornulier (1981: 203) sums up the situation thus: ‘many people supposed to speak well seem 

to flip a coin each time’ when it comes to producing liaison or not in un handicap ‘a 

handicap’, un HLM ‘a social housing project’, or un hameçon ‘a hook’, ‘but, when 

questioned, decide in a definitive and sincere fashion, like the grammarians’.  

• Gabriel and Meisenburg (2009) found intra-speaker variation in a reading-aloud task. 

 

CLAIMS OF WORD1 DIFFERENCES 

Interjections, meta-linguistic uses, and other special words 

• Fouché (1956: 137) and Grevisse & Goosse (2011: 61): oui ‘yes’ usually behaves as alignant, 

but que sometimes undergoes elision before it. 

• Ehrhard (1965: 22): le oui, les oui, mais oui (no elision or liaison), but je crois qu’oui ‘I think 

so’ in speech (though generally written je crois que oui). 

• Grevisse & Goosse (2011: 63): Onze ‘eleven’ normally is alignant (takes le, du), but can 

behave as non-alignant with specific Word1s—liaison of est ‘is’ is possible in il est onze 

heures ‘it is eleven o’clock’, and que and de can undergo elision before onze. 

• Grevisse & Goosse (2011: 65): Names of letters are more likely to behave as non-alignant 

with Word1s that potentially undergo liaison than with Word1s that potentially undergo 

elision. 

 

Proper names 

• Fouché (1956: 260): Personal names that normally are alignant nevertheless trigger liaison of 

preceding ces, des, les, chez. 

• Grevisse & Goosse (2011: 66-67): There is a tendency for any personal name to behave as 

alignant (even those spelled without <h>, such as Octave), the more so if Word1 is que, 

among other factors. 

• Malmberg (1943: 44): Hitler, as it was becoming more common, was triggering more elision, 

especially with de 

• Grevisse & Goosse (2011: 57, seeming to contradict Malmberg, though writing in a different 

period): ‘We have noted de Hitler more often than d’Hitler, but the opposite with que.’ 

(though see Malmberg 1943: 44). 
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• Tranel (1981: 201, fn. 4): Liaison is marginal in le petit Hollandais, worse in les petits 

Hollandais, and rejected in des Hollandais. 

• Durand (1986: 201): Durand’s parents say [lə] Hollandais ‘the Dutch person’ (no elision); 

[le(z)] Hollandais ‘the Dutch people’ (variable liaison); and [pəti.t] Hollandaise ‘little Dutch 

woman’ (enchaînement). 

• Durand (1986: 201): 4 of 10 participants in a reading task said [lə] hongrois ‘the Hungarian 

language’ (no elision) but e[n] hongrois ‘in Hungarian’ (liaison). 

 

Ordinary words 

• Cohen (1963: 140): Cohen’s own speech has no elision in la ouate ‘the cotton wool’, but 

elision in d’ouate. Cohen (1972: 103): The same people who say la ouate (which Cohen 

deems more frequent than l’ouate) say un tampon d’ouate ‘a cotton ball’ 

• Ehrhard (1965: 22): hesitation between la ouate and l’ouate, but un tampon d’ouate is 

preferred. 

• Grevisse & Goosse (2011: 61): ‘L’ouate, not long ago considered outdated [...], is today 

more common [than la ouate], but la ouate and especially de ouate are still said and written.’ 

• Tranel (1981: 201, fn. 4): himself accepts liaison in ils sont hors jeu ‘they are off-side’ but 

not les hors jeux ‘off-sides’ (though there is a part-of-speech difference here). 

• Cohen (1963: 140): Cohen’s own speech has no liaison in les hyènes ‘the hyenas’ and no 

elision in la hyène, but elision in d’hyènes. 

 

LEXICALIZATION OF PARTICULAR WORD COMBINATIONS 

• Grevisse and Goosse (2011: 63): onze ‘eleven’ normally behaves as alignant, but triggers 

elision in the expressions belle/dame-d’onze-heures ‘grass lily’ and, variably, bouillon-d’/de-

onze-heures ‘poisoned beverage’.  

• Grevisse and Goosse (2011: 63): un ‘one’ behaves as unaspirated just in ne faire qu’un ‘to be 

as one’ and c’est tout un (with liaison of tout) ‘it’s all the same’. 

• Many authors (e.g. L’Huillier 1999: 37): huit ‘eight’ behaves as unaspirated only within 

certain compound numerals (e.g. dix-huit ‘eighteen’ (liaison), vingt-huit (liaison) ‘twenty-

eight’, trente-huit ‘thirty-eight’ (schwa deletion); but as aspirated, with no liaison, in cent 

huit ‘one hundred and eight’). 
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• Dubroca (1824: 158): Hollande ‘Holland’ is normally aspirated, but behaves as unaspirated 

in the expressions toile d’Hollande ‘type of cloth’ and fromage d’Hollande ‘type of cheese’ 

• Dubroca (1824: 159): Hongrie ‘Hungary’ is unaspirated just in point d’Hongrie ‘type of 

parquetry’ and eau de la reine d’Hongrie ‘type of perfume’, though we find that texts show 

variation for all of these.  

• Cohen (1963: 138): hameçon ‘hook’ is normatively aspirated and greatly varying in speech, 

but is always unaspirated in mordre à l’hameçon ‘to bite the hook’ . 

 

THE WORD HIATUS 

Prescriptive sources used to list this word as unaspirated, but many now give it as aspirated.  

• Grevisse and Goosse (2011: 60) note that the dictionary of the Académie française made the 

switch in its 1997 edition.  

 

SCHWA/ZERO ALTERNATIONS 

• Grammont (1914: 124): schwa in alignant [ynə] hache ‘an axe’, vs. no schwa in consonantal 

[yn] tache ‘a spot’ and non-alignant [yn] honnête femme ‘an honest woman’ 

• Prescriptive sources and analyses of normative French find this schwa largely when the 

preceding word is spelled with final e, and analyze the phenomenon as blocking of deletion: 

Schane (1968), Selkirk (1972: 329, 379), Dell (1973: 84-93), Fouché (1956: 135-139), 

Grevisse & Goosse (2011: 55, 63). 

• Tranel (1981: 287) has observed schwa in quel hasard ‘such a coincidence’, has obtained 

schwa in direct elicitation of sept haies ‘seven hedges’, and cites Martinon (1913: 249) for 

schwa in avoir honte ‘to be ashamed’.  

• Pagliano (2003) notes that schwa is possible for quel hublot ‘which porthole’.  

• Cohen (1963: 137) reports that his own speech has schwa in une hâte ‘a haste’, une haie ‘a 

hedge’, but not in une hallebarde ‘a halberd’ (all h-aspiré words). 

 

PRE-GENERATIVE ALIGNMENT ANALYSES 

• Frei (1929: 96-100), in a study of errors and non-normative pronunciations, puts forth the 

general principle that clarity is enhanced when elements of an utterance are sufficiently 

separated. In particular, a word boundary should coincide with a syllable boundary—this is 
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frequently untrue in French, because of rampant resyllabification across syllable boundaries 

(enchaînement), but nonetheless, Frei proposes, French speakers are subject to this drive. He 

writes, ‘such is the real raison d’être of the so-called h aspiré, which is in reality a separator 

designated to make the syllable boundary correspond with the word boundary; popular 

language has a tendency to extend it: un | huissier’ (i.e. without liaison, although huissier 

‘bailiff’ is, normatively, non-alignant) (p. 97). Frei relates the lack of liaison and elision, and 

the insertion/non-deletion of preceding schwa seen in alignant words to similar ‘errors’ seen 

with ordinary words, as in the popular lack of elision in quelque chose de ample ‘something 

full’ (p. 97).  

• Damourette and Pichon (1930: 198) characterized h-aspiré as an ‘assurance of hiatus’.  

• Malmberg (1943: 35-36) writes of ‘a tendency to isolate the word from its context and not let 

it be part of a phonetic group, to better conserve its individuality’. 

 

OBSERVATIONS ON ALIGNMENT AS A WAY TO SET APART CERTAIN WORDS 

Metalinguistic uses 

• Grevisse & Goosse (2011: 64): Any vowel-initial word can be treated as alignant when used 

metalinguistically, as in diminutif de aube ‘diminutive of dawn’.  

• Fouché (1956): de is normally used before citing a word when one wishes to draw attention 

to its initial vowel (l’a de « avoir » ‘the a of to have’), but there is variation when one wants 

to draw attention to a later sound (le double f d(e) « effet » ‘the double f of effect’).  

� Our interpretation is that avoir has even stronger reasons to begin with a syllable 

boundary than effet, because not only the word as a whole but also the initial sound 

specifically is being set apart. 

Foreign, archaic, or technical character:  

• Martinet (1933: 201-202): many alignant words are archaic or technical. 

• Grevisse and Goosse (2011: 66-67): alignancy of a personal name is more likely when the 

name sounds particularly foreign. 

• Grevisse and Goosse (2011: 67): there is a tendency towards alignancy when a word or 

phrase is felt to be foreign, even if not spelled with <h> (la upa-upa ‘the upa-upa [Tahitian 

dance]’).  



55 
 

  

A foreign word might be expected to lose its alignant character as it becomes more familiar: 

• Ehrhard (1965: 23): Sartre wrote alignant le ukulélé ‘the ukulele’ in 1945, but twenty years 

later, with the word having become common, non-alignant l’ukulélé was the norm.22 

Length, alone and in interaction with metalinguistic uses or foreign/archaic/technical 

character 

• Grevisse and Goosse (2011: 56): popular speech often fails to respect a word’s status as 

alignant, but ‘the shorter the word, the better disjunction is maintained, as liaison and élision 

would render it difficult to identify’. 

• Grevisse and Goosse (2011: 66-67): disjunction before a personal name is more likely when 

the name is short, and especially if it is only an initial (e.g. A Meillet).  

• Grevisse and Goosse (2011: 64): while alignancy is generally optional in metalinguistic uses, 

it is nearly obligatory when the item is a monosyllabic function word or affix. 

• Grevisse and Goosse (2011: 65): similarly, when another part of speech is used as a noun, it 

often becomes alignant if monosyllabic (le on ‘the one/we’). 

• Fouché (1956: 264-265_: foreign-origin names of French persons are alignant if 

monosyllabic (e.g. Hahn), but tend to be non-alignant if polysyllabic. The same applies to 

German geographic names in France and is the tendency for indigenous names in French 

overseas territory.  

• Malmberg (1943: 44) conjectures, following Gougenheim (1938), that the real reason behind 

instances where a base word is alignant and its derived forms non-alignant is length: alignant 

Hanse ‘Hanseatic League’, hile ‘hilum’, héros ‘hero’, Hitler, Hégel are shorter than their 

non-alignant or varying derivatives hanséatique ‘Hanseatic’, hilifère ‘hiliferous’, héroïne 

‘heroine’, héroïsme ‘heroism’, hitlérien ‘Hitlerian’, hégélianisme ‘Hegelianism’ (see also 

Fouché 1956: 258, 263).  

• Plénat (1995: 7): words formed by the language disguise Verlan are alignant if monosyllabic, 

such as ouf from fou ‘crazy’. 

• Dell (1970: 86-90) and Tranel (1981): schwa insertion is more common for alignant words 

that are monosyllabic than for longer alignant words (Dell’s analysis is in terms of stress). 
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NOTES 

 

1 We don’t require that structure of the constraint set be as simple as in 0: for example, there 

could be a constraint applying to more than one value of a dimension (such as non-mid vowels). 
2 There is a minor correction: Zuraw 2010 gives a count of 1 substituting /g/-initial word for 

maŋ-RED-, but the correct count is 0. 
3 The reference to entropy is explicated by Jaynes (1957: 620), who stated that ‘the maximum-

entropy estimate … is the least biased estimate possible on the given information; i.e. it is 

maximally noncommittal with regard to missing information.’ For example, in an OT-style 

MaxEnt grammar, a tableau with nothing but zeros for the constraint weights results in equal 

probability for all candidates—the least committal, most entropic distribution. 
4 Our notation gives constraints positive weights and negates the weighted sum prior to 

exponentiation, so that ‘Harmony’ is in effect a penalty score. This is a notational variant (more 

intuitive to us, and apparently to its originator, Wilson 2006). The alternative, which is widely 

used and has historical priority (Smolensky 1986), is to let the constraint weights be negative and 

avoid the negative sign in the formula for probability; this lets ‘Harmony’ be related directly to 

higher probability—as the word connotes—though the Harmony values are themselves negative. 

Absolutely nothing empirical hinges on this distinction. 
5 We assume that all unincluded candidates are penalized by constraints whose weights are high 

enough to make their predicted probabilities negligible. 
6 Violations are often expressed as negative numbers instead. Either way, the best weighted sum 

is the one closest to zero. 
7 Default initial weights: all 0. Initial plasticity: 0.01; final plasticity: 0.001. Number of learning 

trials: 10,000,000. Noise imposed is a Gaussian random variable (mean 0, standard deviation 1), 

multiplied by 2 (Boersma 1998a). The only bias imposed is that weights may not be negative. 
8 Because the noise variables are distributed symmetrically around zero, the distribution of 

noise+noise-noise-noise is the same as the distribution of noise+noise+noise+noise. 
9 It was computationally convenient to implement 999 trials rather than 1000. Initial ranking 

values: 100 for all constraints (i.e. no biases). Number of learning trials: 1,000,000. Starting 

plasticity: 2; ending plasticity: 0.01. Noise: 2. 
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10 We define stratification more explicitly as follows: if constraints B and C are unranked, then 

every constraint that outranks B must also outrank C, and every constraint that B outranks must 

also be outranked by C. Then we can say that B and C are in the same ranking stratum, as in A 

>> {B,C} >> D. 

The full version of Anttila’s theory is more powerful because it allows a grammar like 

A>>B, with C unranked. This means that there are three equally probable rankings: C>>A>>B, 

A>>C>>B, A>>B>>C. This is not possible in Stochastic OT, where if A’s ranking value is so 

much higher than B’s that A effectively always outranks B, then there is no possible ranking 

value for C that makes it likely to outrank A but also to be outranked by B. Since the GLA only 

learns possible stochastic OT grammars, it follows that such rankings cannot be learned by the 

GLA. 
11 See Djalali (2013) for an algorithm that inputs non-quantitative data (candidates either are 

legal or not), finds the compatible partial orderings, and calculates predicted frequencies. 

Limitations in the software implementation available to us have prevented us from testing this 

algorithm on the three cases examined here.  
12 The Partial Ordering model predicts some 0 rates, whose log can’t be taken. We applied a 

back-off of 1/100,000 (because there were 100,000 test trials), treating 0 as 0.00001 (and the 

other candidate’s 1 as 0.99999). We did the same for the baseline perfect model. 
13 Some authors reserve the term liaison for words with a single spelled form, whose final 

consonant is pronounced or not according to context, and call the cases in 0 allomorphy. 
14 There can be an overt [h] in some dialectal, theatrical, and emphatic contexts. 
15 Smoothing set to 3, which means that each value plotted is the average of the year shown and 

three years on either side.  
16 In a similar spirit, Tranel (1981) proposes that emphasis and citation are reasons for a word to 

be exempt from normal syllabification rules; being lexically alignant means having a lexical 

requirement to be similarly exempt. 
17 Our analysis below will not explicitly distinguish vowels and glides, though they do have 

some differences in behavior, not detectable in the written data we use. For example, Tranel 

(1981: 304) points out that optional schwa deletion occurs before consonants but not alignant 

vowels in spoken French: ce vin [s(ə) vɛ]̃ ‘this wine’, but ce hasard [sə azaʁ] ‘this coincidence’; 

but, he notes, optional schwa deletion is allowed before an alignant glide (ce whisky-là [s(ə) 
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wiski la], in violation of ALIGN. Another way in which alignant glides differ from alignant 

vowels is that in dialects where cinq ‘five’ loses the final consonant of its citation form before a 

consonant-initial word, it also can lose it before an alignant glide, but not an alignant vowel 

(Cornulier 1981: 206). 
18 In the logistic regression model, the coeffiecients are: beau/bel 2.46, ma/mon 2.40, vieux/vieil 

1.76; de/d’ 0.31, au/à l’ 0.00, la/l’ -0.16; le/l’ -0.37, du/de l’ -0.49. For details on exactly which 

pairwise differences are significant and according to what criteria, see the supplemental files for 

French. 
19 We will use F both for stems that end in F and for stems that end in F followed by any number 

of N, because all such stems consistently take front suffixes. NNN, NNNN, and BNNN stems are 

also consistently front in our data. 
20In principle, there are eight possible consonantal-constraint patterns (viz.: has none of the 

properties in Error! Reference source not found.; has just a, just b, just c, just d; has a and d, b 

and d, or c and d), and it would be ideal to treat each one separately. But 12% of the points in 

such a plot would be missing because there is no data, and another 28% would be based on fewer 

than 10 stems. By grouping the consonantal dimension into the three values used here, we end up 

with just one missing data point in 0 is missing, and only three more (12%) based on fewer than 

ten stems. 
21 All translations are our own. 
22 Though it is possible that, under English influence, there is variation between [jukulele] and 

[ukulele] 
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rates of vowel devoicing 
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applying to high 
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id 
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applying to low

 
V
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constraint applying 

to aspirated Cs 

 
/pʰi/ → [pʰi̥]: x%  /pʰe/ → [pʰe̥]: y%  /pʰa/ → [pʰḁ]: z% 

 

        

constraint applying 

to voiceless unaspirated Cs 

 
/pi/ → [pi̥]: w%  /pe/ → [pe̥]: v%  /pa/ → [pḁ]: u% 

 

        

constraint applying 

to voiced Cs 

 
/bi/ → [bi̥]: t%  /be/ → [be̥]: s%  /ba/ → [bḁ]: r% 

 

        
 
 

FIGURE 1. Intersecting families of constraints: a schematic view 
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FIGURE 2. Rates of nasal substitution by consonant — dictionary data 
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Key (RED = reduplication): 
 
Prefix Construction  

a. /maŋ-other/ non-adversative verbs 
b.  /paŋ-RED-/ mainly gerunds 
c. /maŋ-RED-/ professional or habitual nouns 
d. /maŋ-adv/ adversative verbs 
e. /paŋ-noun/ various nominalizations 
f. /paŋ-res/ reservational adjectives 

 
FIGURE 3. Tagalog Nasal Substitution by prefix construction 
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FIGURE 4. Rates of nasal substitution collated 
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/maŋ-other+p…/             
[ma-m…] 65   *   *      
[mam-p…]   0 * *          
/paŋ-res+p…/             
[pa-m…]   4.5   *        * 
[pam-p…]   4.5 * *          
/maŋ-other+t…/             
[ma-n…] 71   * *  *      
[man-t…]   0 * *          
/maŋ-other+k…/             
[ma-ŋ…] 74.5   * * * *      
[maŋ-k…]   0.5 * *          
/maŋ-other+b…/             
[ma-m…] 66   *   *      
[mam-b…]   6 *           
/maŋ-other+d…/             
[ma-n…]   7   * *  *      
[man-d…]   3 *           
/maŋ-other+g…/             
[ma-ŋ…]   0   * * * *      
[maŋ-g…] 13 *           

 
<Tableau for example 7> 
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weight: 4.9 0.0 2.1 1.2 2.3 0.0 0.8 1.9 2.3 4.1 6.0    
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Harmony 

(10) 

 

eHarmony 

(11) 

 

probability (8), 

(12) 

 

[pa-n...] (subst.) 
60.5 words (67%) 0 1 1 0 0 0 0 0 0 1 0 

1 × 0.0 + 
1 × 2.1 + 
1 × 4.1 
= 6.2 

e−6.2 

= 0.0020 

.0020
 .0020+.0008 = 

0.73 

[pan-t...] (unsubst.) 
29.5 words (33%) 1 0 0 0 1 0 0 0 0 0 0 

1 × 4.9+ 
1 × 2.3 
= 7.2 

e−7.2 

= 0.0008 

.0008
 .0020+.0008  

= 0.27 
 

<Tableau for Example 9> 
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constraint weight 

NASSUB 2.31 
*NC̥ 4.85 
*[root m/n/ŋ 0.00 
*[root n/ ŋ 2.13 
*[root ŋ 1.16 
UNIF-maŋ-OTHER 0.00 
UNIF-paŋ-RED 0.82 
UNIF-maŋ-ADV 1.92 
UNIF-maŋ-RED 2.29 
UNIF-paŋ-NOUN 4.06 
UNIF-paŋ-RES 6.01 

 
 

TABLE 1. MaxEnt weights fitted to Tagalog 
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FIGURE 5. MaxEnt grammar’s probabilities 
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FIGURE 6. Substitution probabilities for two prefixes, as a function of consonants’ markedness 

differences 
 
  



10 
 

  

weight 10.6 0.4 4.4 2.2 6.2 0.4 2.1 4.3 5.0 8.9 13.6   
noise (Gaussian) -0.7 0.3 1.2 0.1 0.2 0.0 -0.5 -0.2 -0.4 -0.4 -1.2   

weight+noise              
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aŋ
- R
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S
 weighted 

sum of 

constraint 

violations 

before 

noise 

weighted 

sum of 

constraint 

violations 

after noise 

[pa-n...] (subst.) 
60.5 words 0 1 0 0 0 0 0 0 0 0 1 14.0 13.1 winner 
[pan-t...] (unsubst.) 
29.5 words 1 0 0 0 1 0 0 0 0 0 0 16.8 16.3 

 
<Tableau for example 14> 
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constraint weight 

NASSUB 6.17 
*NC̥ 10.61 
*[root m/n/ŋ 0.42 
*[root n/ ŋ 4.36 
*[root ŋ 2.17 
UNIF-maŋ-OTHER 0.37 
UNIF-paŋ-RED 2.12 
UNIF-maŋ-ADV 4.31 
UNIF-maŋ-RED 5.01 
UNIF-paŋ-NOUN 8.94 
UNIF-paŋ-RES 13.61 

 
<Tableau for example 15> 
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FIGURE 7. Noisy HG grammar’s probabilities of nasal substitution 
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FIGURE 8. Probability of substitution as a function of UNIF weight in Noisy HG 
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constraint ranking value 

NASSUB -310.72 
*NC̥ -304.15 
*[root m/n/ŋ -2355.49 
*[root n/ ŋ -315.55 
*[root ŋ -308.22 
UNIF-maŋ-OTHER -314.59 
UNIF-paŋ-RED -312.71 
UNIF-maŋ-ADV -309.02 
UNIF-maŋ-RED -309.96 
UNIF-paŋ-NOUN -306.99 
UNIF-paŋ-RES -302.22 

 
TABLE 2. Best GLA-learned Stochastic OT ranking values for Tagalog 
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FIGURE 9. Stochastic OT model of Tagalog 
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constraint ranking value  constraint ranking value 

*N+p 105.4  UNIF-paŋ-RES 105.3 
*N+t/s 104.2  UNIF-paŋ-NOUN 102.5 
*N+k 103.1  UNIF-maŋ-RED- 99.9 
*N+b 100.1  UNIF-maŋ-ADV 99.2 
*N+d 96.1  UNIF-paŋ-RED- 97.1 
*N+g 91.0  UNIF-maŋ-OTHER 95.9 

 
TABLE 3. Stochastic OT grammar with consonant-specific constraints: ranking values learned 
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FIGURE 10. Stochastic OT grammar with consonant-specific constraints: predictions 
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fits all prefixes with /g/, /maŋ-other+b.../,  fits paŋ-noun with voiceless Cs 
/paŋ-noun+b.../, and / maŋ-other+k.../ 

       
 

FIGURE 11. Contradictory hand-built Stochastic OT grammar fragments 
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 constraint ranking value 

Stratum 1 *NC̥ 2480 
 UNIF-paŋ-NOUN 2480 
 UNIF-paŋ-RES 2480 
Stratum 2 *[root ŋ 2440 
Stratum 3 *[root n/ŋ 2400 
 NASSUB 2400 
 UNIF-maŋ-RED- 2400 
Stratum 4 UNIF-maŋ-ADV 2380 
Stratum 5 UNIF-paŋ-RED- 1960 
Stratum 6 *[root m/n/ŋ -2200 
Stratum 7 UNIF-maŋ-OTHER -13400 

 
TABLE 4. Best Stratified Anttilian model 
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FIGURE 12. Best stratified Anttilian model predictions 
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      no nasal substitution 
       30% 

 
 
   
  nas. sub. no nas. sub. 
  70% * 40% 70% * 60% 
  = 28%  = 42% 

  

 Total rate of substitution: 28% 
 Total rate of non-substitution: 42% + 30% = 72% 

 
 

FIGURE 13. Decision tree: Morphosyntactic decision feeds phonological decision 
 
  

loose structure: ineligible 

(30% of the time) 

close structure: eligible (70% 

of the time for this prefix) 

nas. sub. does  

not apply (60%) 

nas. sub. applies (40% 

for this consonant) 

morphology/syntax 

phonology 



22 
 

  

morphology probability of close 

structure 

 consonant probability of substitution, 

given close structure 

maŋ-other 1.00  p  1.00 
paŋ-RED- 1.00  t/s 1.00 
maŋ-adv 1.00  k 0.98 
maŋ-RED- 0.95  b 0.74 
paŋ-noun 0.65  d 0.21 
paŋ-res 0.27  g 0.01 

 
 

TABLE 5. Component probabilities fitted for decision tree model 
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FIGURE 14. Predictions of the decision tree model 
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log likelihood 

closer to 0 is better 
number of free 

parameters 
MaxEnt -284.82 (best) 11 
Noisy Harmonic Grammar -294.48 11 
Stochastic OT -314.64 11 
Stratified version of Partial Ordering OT -645.72 11 
Decision tree -292.31 12 
perfect model (correct rate for 

 each C-by-prefix category) 
-254.66 36 

 
 

TABLE 6. Model fits 
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Word1 default 
allomorph 

 liaison/elision 
allomorph 

 

‘the-masc’ le sapin 

[lə sapɛ]̃ 
‘the fir tree’ l’if 

[l if] 
‘the yew tree’ 

‘the-fem’ la courgette 

[la kuʁʒɛt] 
‘the zucchini’ l’aubergine 

[l obɛʁʒin] 
‘the eggplant’ 

‘of’ de jonquilles  

[də ʒɔ̃kij] 
‘of daffodils’ d’iris 

[d iʁis] 
‘of irises’ 

‘of the-masc’ du petit 

[dy pətit] 
‘of the small one’ de l’enfant 

[də l ɑ̃fɑ̃] 
‘of the child’ 

‘at/to the-masc’ au lac 

[o lak] 
‘at the lake’ à l’étang 

[a l etɑ̃] 
‘at the pond’ 

 
TABLE 7. Two allomorphs of Word1 
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__C form __V form  

le [lə] l’ [l] ‘the’-masc 

du [dy] de l’ [də l] ‘of the’-masc 

au [o] à l’ [a l] ‘to the’-masc 

de [də] d’ [d] ‘of’ 

que [kə] qu’ [k] ‘that’ (complementizer) 

se [sə] s’ [s] ‘it/him/her/one-self’ 

te [tə] t’ [t] ‘you’ 

me [mə] m’ [m] ‘me’ 

je [ʒə] j’ [ʒ] ‘I’ 

ne [nə] n’ [n] ‘not’ 

la [la] l’ [l] ‘the’-fem 

ce [sə] cet [sɛt] ‘this’ 

ma [ma] mon [mõn] ‘my’-fem 

ta [ta] ton [tõn] ‘your’-fem 

sa [sa] son [sõn] ‘his/her/its’-fem 

beau [bo] bel [bɛl] ‘pretty’-masc 

nouveau [nuvo] nouvel [nuvɛl] ‘new’-masc 

vieux [vjø] vieil [vjej] ‘old’-masc 

fou [fu] fol [fɔl] ‘crazy’-masc 

mou [mu] mol [mɔl] ‘limp’-masc 

 
TABLE 8. Full list of Word1s 
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Alignant Non-alignant 

le yodle         [lə jɔdl] 
le yaourt       [lə jauʁt] 
la hiérarchie [la jeʁaʁʃi] 

‘yodels it’ 
‘the yogurt’ 
‘the hierarchy’ 

l’iode       [l jɔd] 
l’yeuse     [l jøz] 
l’hiatus    [l jatys] 

‘the iodine’ 
‘the oak’ 
‘the hiatus’ 

la huée          [la ɥe] 
le huitième    [lə ɥitjɛm] 

‘the booing’ 
‘the eighth’ 

l’huître     [l ɥitʁ] 
l’huile      [l ɥil] 
l’huissier  [l ɥisje] 

‘the oyster’ 
‘the oil’ 
‘the bailiff’ 

le ouistiti      [lə wistiti] ‘the marmoset’ l’ouest      [l wɛst] ‘the west’ 
 

 
TABLE 9. Glide-initial words exemplifying each behavior (Walker 2001: 105-106) 
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FIGURE 15. Change over time for hiatus ‘hiatus’ 
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 /yn(ə) aʃ/ ALIGN *C.V DEP-ə/*ə 
� yn. aʃ  *  
� y.n aʃ *   
� y.nə . aʃ   * 

 
 

<Tableau for example 18> 
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FIGURE 16. Histogram of non-alignant behavior 
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Word2 random 

intercept 

non-alignment 

rate 

normative 

behavior 

gloss 

habituel  2.425 96.9% non-alignant ‘habitual-masc’ 
habituelle  1.649 99.0% non-alignant ‘habitual-fem’ 
habitus  2.208 97.1% non-alignant ‘habitus’ 
hache -4.861  0.1% alignant ‘axe’ 
hachette -3.862  0.0% alignant ‘hatchet; moth sp.’
hacienda -0.446 78.6% non-alignant ‘hacienda’ 
haddock -2.729  0.0% alignant ‘haddock’ 
Hadès  1.047 85.3% non-alignant ‘Hades’ 
hadji -3.052  0.0% alignant ‘haji’ 
Hadrien  0.633 98.6% non-alignant ‘Hadrian’ 

 
 

TABLE 10. Sample non-alignancy index values 
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FIGURE 17. Observed non-liaison/élision rate as a function of Word2 and Word1 
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General phonological constraint 

NOHIATUS • A syllable may not begin with a vowel or glide. 
• Combines ONSET and the MARGIN family (both Prince & 

Smolensky 1993/2004). 
• Promotes non-alignant behavior. 

Constraints enforcing propensities of Word1 and Word2 

USEAU 
USEDU 
USEDE 
USELE 
... 

• For each Word1, there is a constraint preferring its 
citation allomorph. 

• Promote alignant behavior (use of citation/pre-C form). 

ALIGN(MORPHEME, L; SYLL, L) • A morpheme (in particular, Word2), should begin with a 
syllable boundary (McCarthy & Prince 1993). 

• There are five versions of this constraint, one for each 
alignancy group. 

• Promote alignant behavior (use of citation/pre-C form). 
 
 

TABLE 11. Constraints for French analysis 
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 /lə ivɛʁ/group 5 

 
ALIGN(Morph, L; Syll, L) 

group 2 
NOHIATUS USELE ALIGN(Morph, L; Syll, L) 

group 5 
lə.i.vɛʁ  *!   

� li.vɛʁ   * * 
 

 /lə ibu/group 2 
 

ALIGN(Morph, L; Syll, L) 
group 2 

NOHIATUS USELE ALIGN(Morph, L; Syll, L) 
group 5 

� lə.i.bu  *   
 li.bu *  *  
 

<Tableau for example 19> 
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name MaxEnt 
weight 

Noisy HG 
weight 

ALIGN—group 1 10.13 17.51 
ALIGN—group 2 8.01 14.91 
ALIGN—group 3 4.95 9.58 
ALIGN—group 4 2.06 3.75 
ALIGN—group 5 0.00 0.19 
NOHIATUS 6.20 12.13 
USEMA 0.00 0.01 
USEBEAU 0.28 0.22 
USEVIEUX 0.88 1.95 
USELA 1.34 2.91 
USEDE 1.56 3.30 
USEAU 2.26 4.61 
USELE 2.54 5.07 
USEDU 2.78 5.52 

 
 

TABLE 12. Constraint weights fitted for MaxEnt and Noisy HG models 
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FIGURE 18. MaxEnt model predictions 
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FIGURE 19. Noisy Harmonic Grammar model predictions 
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constraint ranking value 

ALIGN—group 1 193.52  
ALIGN—group 2 192.39  
ALIGN—group 3 188.27  
ALIGN—group 4 182.86  
ALIGN—group 5 -344.23  
NOHIATUS 187.18  
USEMA -34.52  
USEBEAU 11.77  
USEVIEUX 21.09  
USELA 76.75  
USEDE 90.67  
USEAU 181.11  
USELE 182.89  
USEDU 183.06  

 
 

TABLE 13. Ranking values of best Stochastic OT model 
 
  



39 
 

  

 
 

FIGURE 20. Predictions of best Stochastic OT model 
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 constraint ranking value 

Stratum 1 ALIGN—group 1 3460 
 ALIGN—group 2 3460 
Stratum 2 ALIGN—group 3 3420 
 ALIGN—group 4 3420 
 NOHIATUS 3420 
Stratum 3 USEAU 3400 
 USELE 3400 
Stratum 4 USEDU 3380 
Stratum 5 USELA -1260 
Stratum 6 USEDE -1820 
Stratum 7 USEVIEUX -1880 
Stratum 8 USEBEAU -3100 
Stratum 9 USEMA -4640 
Stratum 10 ALIGN—group 5 -16580 

 
 

TABLE 14. Best Stratified Partial Ordering OT model 
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FIGURE 21. Predictions of best stratified Partial Ordering OT model 
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Word1 probability of close 

structure 

 Word2 

group 

probability of non-alignment, 

given close structure 

beau/bel 1.00  1 0.01 
ma/mon 1.00  2 0.03 
vieux/vieil 0.96  3 0.34 
au/à l’ 1.00  4 0.94 
de/d’ 0.98  5 1.00 
la/l’ 1.00    
du/de l’ 0.97    
le/l’ 0.96    

 
 

 
TABLE 15. Component probabilities fitted for decision tree model 
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FIGURE 22. Results of fitting decision tree 
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model log likelihood 
(closer to 0 is better) 

number of free 
parameters 

MaxEnt -197.71  (best) 14 
Noisy Harmonic Grammar -198.80 14 
Stochastic OT (best fit) -233.61 14 
Stratified Partial Ordering OT (best fit) -410.64 14 
Decision tree -207.95 13 
perfect model (baseline) -189.36 40 

 
 

 
TABLE 16. Comparison of model fits for French 
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FIGURE 23. Hungarian lexical data 
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FIGURE 24. Hungarian nonce-stem data 
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I. Vowel family 

 

Constraint schematically, in features Comment 

a. AGREE(back, local) *[+back][–back] Vowels must agree in 
backness with a preceding 
back vowel. 

b.  AGREE(back, nonlocal) *[+back] N0 [–back] Nonlocal version of (a) 
c.  AGREE(front rounded) *[–back,+round] N0 [+back] Vowels must agree in 

backness with a preceding 
front rounded vowel, even 
if neutral vowels 
intervene. 

d.  AGREE(front, local) *[–back][+back] Vowels must agree in 
backness with a preceding 
front vowel. 

e.  AGREE(non-high front, local) *[–back,–high][+back] Specific version of (e), 
limited to non-high 
triggers 

f.  AGREE(low front, local) *[–back,+low][+back] Specific version of (f), 
limited to low triggers1 

g.  AGREE(double front, local)2 *[–back][–back][+back] Two-trigger harmony 
h. MONOSYLL-[iː]: prefer back 

suffixes when the stem is 
monosyllabic with the vowel [iː]. 
 

 An unnatural constraint; 
relevant stems arise from 
historical back unrounded 
vowels. 

 
II. Consonant family 

a. BILABIAL:  Prefer front suffixes when the stem ends in a bilabial noncontinuant ([p, b, m]). 
b. SIBILANT:  Prefer front suffixes when the stem ends in a sibilant ([s, z, ʃ, ʒ, ts, tʃ, dʒ]). 
c. CORSON:  Prefer front suffixes when the stem ends in a coronal sonorant ([n, �, l, r]). 
d. CLUSTER: Prefer front suffixes when the stem ends in a sequence of two consonants. 
 
 

TABLE 17. Constraints for Hungarian 
  

                                                 
1 We treat [ɛ], the lowest front vowel of Hungarian, as [+low]: in suffixes it alternates with a low 

vowel, and phonetically it is often rather lower than the IPA symbol suggests. 
2 We assign two violations to BNNN-nɔk and NNN-nɔk, and three violations to NNNN-nɔk. 
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Constraint MaxEnt weight Noisy HG weight 

AGREE(back, local) 3.96 6.18 
AGREE(back, nonlocal) 5.23 7.41 
AGREE(front rounded) 4.03 3.32 
AGREE(front, local) 1.66 1.59 
AGREE(non-high front, local) 1.37 1.71 
AGREE(low front, local) 3.01 6.72 
AGREE(double front, local) 3.77 6.53 
MONOSYLL-[iː] 2.36 2.27 

BILABIAL 2.38 3.34 
SIBILANT 0.84 0.65 
CORSON 1.04 1.02 
CLUSTER 1.71 2.28 

 
 

TABLE 18. Constraint weights fitted for MaxEnt and Noisy HG models 
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a. Predictions for lexical data 

 

 

b. Predictions for nonce-probe data 

 

FIGURE 25. Maximum Entropy model predictions for Hungarian 
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a. Predictions for lexical data 

 

 

b. Predictions for nonce-probe data 

 

FIGURE 26. Noisy Harmonic Grammar model predictions for Hungarian  
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Constraint StOT ranking value 

AGREE(back, local) 89.90 
AGREE(back, nonlocal) 82.75 
AGREE(front rounded) 85.97 
AGREE(front, local) -214.14 
AGREE(non-high front, local) 79.58 
AGREE(low front, local) 86.38 
AGREE(double front, local) 84.78 
MONOSYLL-[iː] 76.24 

BILABIAL 82.07 
SIBILANT 78.21 
CORSON 78.24 
CLUSTER 80.69 

 

 
TABLE 19. Constraint ranking values fitted for Stochastic OT model 
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a. Predictions for lexical data 

 

a. Predictions for nonce-probe data 

 

 

FIGURE 27. Stochastic OT model predictions for Hungarian 
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 Constraint ranking value 

Stratum 1 AGREE(front rounded) -100 
Stratum 2 AGREE(back, local) -880 
 AGREE(low front, local) -880 
Stratum 3 AGREE(back, nonlocal) -900 
 AGREE(non-high front, local) -900 
 AGREE(double front, local) -900 
Stratum 4 BILABIAL -920 
 CLUSTER -920 
Stratum 5 SIBILANT -940 
Stratum 6 MONOSYLL-[iː] -980 

 CORSON -980 
Stratum 7 AGREE(front, local) -10620 

 
 

TABLE 20. Best Stratified Partial Ranking OT mode 
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a. Predictions for lexical data 

 

a. Predictions for nonce-probe data 

 

FIGURE 28. Stratified Partial Ordering OT model’s predictions for Hungarian 
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Model log likelihood for 
lexical data 

(closer to 0 is better) 
n of stems = 8,915 

log likelihood for wug 
data 

(closer to 0 is better) 
n of stems = 1,602 

number of 
free 

parameters 

MaxEnt -187.06 (best)   -823.28 (tied for best) 12 
Noisy Harmonic Grammar -196.76   -823.29 (tied for best) 12 
Stochastic OT (best fit) -280.83   -971.28 12 
Stratified Partial Ordering 
OT (best fit) -432.68 -2685.75 12 
perfect model (baseline) -164.06   -648.50 232 

 
 

TABLE 21. Comparison of model fits for Hungarian 
 


