
To appear in Michael Arbib, ed., Handbook of Brain Theory and Neural Networks, 2nd edition. MIT Press. 1

Optimality Theory in Linguistics

Kie Zuraw

Department of Linguistics

University of Southern California

3601 Watt Way, GFS 301

Los Angeles, CA 90089-1693

Short title: Optimality Theory

phone: 213-740-3884

fax: 213-740-9306

email: zuraw@usc.edu

To appear in Michael Arbib, ed., Handbook of Brain Theory and Neural Networks, 2nd edition. MIT Press. 2

INTRODUCTION

Prince and Smolensky (1993) introduced Optimality Theory (OT) as a framework for linguistic

analysis. Kager (1999) gives an entry-level introduction to OT, McCarthy (2001) surveys

advanced topics, and the Rutgers Optimality Archive, (http://ruccs.rutgers.edu/roa.html) contains

hundreds of OT papers. Within phonology, OT has largely supplanted rule-based frameworks.

OT has also been applied to syntax and semantics, although not as widely; Legendre, Grimshaw,

and Vikner (2001) provide an overview of current work in OT syntax.

Rule-based frameworks account for linguistic patterns through the sequential application

of transformations to lexical entries. For example, variation between two pronunciations of the

English plural suffix—[s] in cats but [z] in dogs—is explained by a rule that devoices the suffix

after voiceless consonants (like [t]). The input cat + /z/, assembled from entries in the speaker’s

mental dictionary, is transformed by rule into the output cat[s]. In OT, the output is instead

chosen through competition with other candidates: a constraint requiring adjacent consonants to

match in voicing favors cat[s] over cat[z].

 Generation of utterances in OT involves two functions, Gen and Eval. Gen takes an input

and returns a (possibly infinite) set of output candidates. Some candidates might be identical to

the input, others modified somewhat, others unrecognizable. Eval chooses the candidate that best

satisfies a set of ranked constraints; this optimal candidate becomes the output.

The constraints of Eval are of two types. Markedness constraints enforce well-

formedness of the output itself, prohibiting structures that are difficult to produce or

comprehend, such as consonant clusters or phrases without overt heads. Faithfulness constraints

enforce similarity between input and output, for example requiring all input consonants to appear

in the output, or all morphosyntactic features in the input to be overtly realized in the output.

Markedness and faithfulness constraints can conflict, so the constraints’ ranking—which differs

from language to language—determines the outcome. One language might eliminate consonant

To appear in Michael Arbib, ed., Handbook of Brain Theory and Neural Networks, 2nd edition. MIT Press. 3

clusters by deleting consonants, despite the resulting faithfulness violations; another might retain

all input consonants, violating the markedness constraint.

In standard OT, constraints are strictly ranked and violable. Strict ranking means that a

candidate violating a high-ranking constraint cannot redeem itself by satisfying lower-ranked

constraints (constraints are not numerically weighted, and lower-ranked constraints cannot gang

up on a higher-ranked constraint). Violability means that the optimal candidate need not satisfy

all constraints. Eval can be viewed as choosing the subset of candidates that best satisfy the top-

ranked constraint, then, of this subset, selecting the sub-subset that best satisfy the second-ranked

constraint, and so on. Another way of describing Eval is that a candidate i is optimal if and only

if, for any constraint that prefers another candidate j to i, there is a higher-ranked constraint that

prefers i to j.

The tableau (a standard expositional device in OT) in Figure 1 illustrates output selection

for the input /ilp/ in a hypothetical mini-language. Each of the four output candidates is flawed:

c, the most faithful, has a consonant cluster; violating the markedness constraint *CC, as

indicated by the asterisk at the intersection of *CC’s column and c’s row. Candidate b has

deleted a segment, and a has inserted a segment; these candidates violate the Faithfulness

constraints DON’TDELETE and DON’TINSERT, respectively (phonologists’ MAX and DEP).

Candidate d has inserted a segment without breaking up the consonant cluster, violating both

DON’TINSERT and *CC.

*CC is the highest-ranked constraint (ranking is indicated by left-to-right ordering of the

constraints’ columns—we can also write *CC >> DON’TDELETE >> DON’TINSERT). Eval first

eliminates c and d from the competition (exclamation mark represents elimination) because they

alone violate *CC. The shading in the cells to the right represents the irrelevance of c’s and d’s

performance on any lower-ranked constraints. Eval next eliminates b, because it violates

DON’TDELETE; the remaining candidate, a, is optimal, as indicated by the pointing finger. In this

language, an input string /ilp/ is pronounced [ilip]; in another language, the constraint ranking,

and thus the output, might be different. There are rankings that would choose a or b as the

To appear in Michael Arbib, ed., Handbook of Brain Theory and Neural Networks, 2nd edition. MIT Press. 4

optimal candidate. Candidate d, however is harmonically bounded by a, and by c: its violations

are a proper superset of both a’s and c’s. Therefore, d cannot be the optimal candidate under any

ranking of just these three constraints, though it could be optimal with a larger constraint set.

Wilson (2001) proposes an alternative formulation of Eval, in which markedness

constraints are ‘targeted’: they compare only candidates that are maximally perceptually similar

and impose only pairwise preferences on candidates. For each constraint, starting with the

highest ranked, Eval adds any new pairwise preferences that do not contradict those imposed by

higher-ranked constraints, and constructs the transitive closure.

OT IN LINGUISTIC THEORY

This section reviews why OT has been so widely adopted, and its advantages and disadvantages.

See McCarthy (2001) for discussion of these issues.

OT was developed as a response to a “conceptual crisis at the center of phonological

thought” (Prince & Smolensky 1993; 1) concerning the role of output constraints. In a 1970

Linguistic Inquiry article, Charles Kisseberth identified a ‘conspiracy’ in Yawelmani: rules of

vowel insertion and deletion conspire to place every consonant adjacent to a vowel. Kisseberth

proposed introducing constraints (such as *CCC, forbidding three-consonant clusters) to block or

trigger rules, which could then be simplified and made more similar across languages. Output

constraints were increasingly exploited in the literature, but many aspects of their use were

unclear. How should a constraint be designated to blocker or trigger a rule? What if output

constraints conflicted? How could non-absolute preferences be expressed? For example,

Yawelmani allows the sequences CiCC and CCiC, but underlying CCC is repaired to CiCC.

Therefore, in addition to the constraint *CCC and the rule of i-insertion, there must be a

constraint preferring CiCC over CCiC. But this second constraint is violable, because CCiC

sequences do occur. OT addressed these problems by eliminating rules entirely in favor of

constraints, and specifying how constraints interact.

To appear in Michael Arbib, ed., Handbook of Brain Theory and Neural Networks, 2nd edition. MIT Press. 5

One advantage of OT over rule-based theories is that it predicts the emergence of the

unmarked (‘TETU’): a markedness constraint that is frequently violated in a language may still

affect outputs. The constraint favoring CiCC over CCiC in Yawelmani, for example, is not

surface-true (CCiC sequences do occur, because high-ranking faithfulness constraints preserve

them), but when *CCC forces a vowel to be inserted, CiCC is preferred over CCiC. A major

contribution of OT has been focusing attention on TETU, of which many new cases have been

found.

Another advantage of OT is its straightforward account of what McCarthy calls

‘homogeneity of target/heterogeneity of process’. A rule specifies the structure that it applies to

(target), and the operation to be performed on that structure (process). It has long been observed,

however, that rules applying different processes to the same target tend to occur, cross-

linguistically and within the same language. A rule-based theory has no explanation for why a

structure should be a recurring target. In OT, however, the explanation is straightforward: there

is a markedness constraint against the target, but whether and how the target is repaired depends

on interaction with other constraints. In Figure 1, for example, permuting the constraint ranking

yields three mini-languages: one that allows CC clusters, one that eliminates them by vowel

insertion, and one that eliminates them by consonant deletion. The set of predicted languages that

results from permuting the ranking of a group of constraints is its factorial typology. A proposed

set of interacting constraints is considered viable only if its factorial typology matches the

typology of observed languages—that is, it predicts all existent and no non-existent patterns.

In some cases, OT’s prediction of heterogeneity of process may be overly exuberant. For

example, all else being equal, languages that resolve intervocalic CC clusters by deletion delete

the first consonant, not the second. Wilson’s targeted constraints close this gap in the factorial

typology: with targeted constraints, deleting the second consonant cannot be optimal under any

constraint ranking.

OT is at a disadvantage in dealing with opacity. In a rule-based framework, opacity

occurs when a later rule either eliminates the structure that caused an earlier rule to apply

To appear in Michael Arbib, ed., Handbook of Brain Theory and Neural Networks, 2nd edition. MIT Press. 6

(obscuring why the earlier rule applied), or creates a structure that would have caused an earlier

rule to apply (obscuring why the earlier rule failed to apply). Standard OT, however, is unable to

capture most opacity. Several additional proposals have therefore been made, including

harmonic serialism, turbid output representations, output-output faithfulness, sympathy, targeted

constraints, and constraint conjunction (see McCarthy 2001, chapter 3, for a survey). The

computability consequences of these proposals, in learning and/or generation, remain to be

established.

COMPUTABILITY OF OT

Generation

In rule-based frameworks, generation—mapping input to output, the speaker’s task—is

straightforward. Each rule identifies target structures in a representation, makes the required

change, and passes the result to the next rule. In OT, generation presents a computational

challenge, because the candidate set may be infinite (in phonology, it is always infinite, because

insertions are unlimited). In that case, Eval cannot proceed in the obvious way, by first going

through all candidates and totaling violations of the highest-ranked constraint, because that first

step would never end.

Eisner (1997), building on earlier work of Mark Ellison, proposes a simple way of

dealing with the infinite candidate set: at every point in his generation algorithm, the candidate

set is represented as a finite-state automaton (FSA), rather than as a list. This is possible if the

candidates and constraints are expressed in Eisner’s Primitive Optimality Theory (OTP)

formalism.

The winning candidate in OTP can be defined recursively. Repns is an FSA that accepts

all syntactically well-formed OTP representations of input-output mappings. Input is an FSA that

accepts mappings from the given input to any output. Intersecting Repns and Input produces an

FSA, S0, that accepts well-formed mappings from the given input. S0 is the initial candidate set.

To appear in Michael Arbib, ed., Handbook of Brain Theory and Neural Networks, 2nd edition. MIT Press. 7

Further, define an FSA Ci for each of the n constraints in the hierarchy, where C1

corresponds to the highest-ranked constraint. Each Ci accepts any mapping, but the arcs that a

mapping traverses when it violates CONSTRAINTi are weighted. C1 is intersected with S0 to

produce an FSA that accepts S0, but with the arcs corresponding to violations of CONSTRAINT1

weighted. Dijkstra’s Best Paths algorithm, which finds the least-weighted path(s) through an

FSA, is then applied to C1 ∩ S0 to yield an FSA (S1) that accepts the representations in S0 that

minimally violate CONSTRAINT1—i.e., the set of candidates left after CONSTRAINT1 has applied.

Repeating this procedure for all n constraints, the winning candidate (or set of candidates, if

there are not enough constraints to select a unique winner) is Sn.

Comprehension

Comprehension—the listener’s task—has been little addressed for standard OT, though Eisner

(2000) proposes an algorithm for comprehension under ‘directional constraint evaluation’. A

comprehension algorithm would yield, for a given output form, the (possibly infinite) set of

inputs that would map to that output under the given grammar. The problem is not trivial: the

input may contain a markedness violation not found in the output just in case the constraint

ranking is such that the violation would have been repaired by a higher-ranking faithfulness

constraint, and the result of the repair would be the observed output.

Learning

Learning—the child’s task—includes (at least) two subtasks: building a lexicon and determining

the constraint ranking of the target language. If the constraint set is not universal, the learner

must also determine what the constraints of her language are; see Boersma (1998) for a model of

learning articulatory and acoustic constraints, and Albright and Hayes (1999) for an algorithm

that learns morphophonological constraints.

Little work exists on the learnability of the lexicon. Prince and Smolensky (1993)

propose ‘lexicon optimization’: where possible, learners construct lexical representations that are

To appear in Michael Arbib, ed., Handbook of Brain Theory and Neural Networks, 2nd edition. MIT Press. 8

identical to the surface representations they hear. When the learner encounters alternations, such

as the different pronunciations of the English plural suffix, she must construct a single lexical

representation. Curtin (2000) presents evidence that children’s early lexical representations are

phonetically detailed and do not strip out redundancies; this suggests that lexical consolidation of

different pronunciations of the same morpheme occurs relatively late in learning, perhaps after

most of the constraint ranking is established.

The problem of establishing a constraint ranking has been addressed more thoroughly.

Tesar and Smolensky’s Constraint Demotion Algorithm and its variants, described in Tesar and

Smolenksy (2000), rank a set of constraints given a set of outputs. The algorithm compares an

observed output (presumed to come from a mature speaker) to any candidate erroneously rated as

optimal under the learner’s current constraint ranking. In order to make the observed output

optimal, for every constraint B that prefers the spurious output, some higher-ranked constraint A

must prefer the observed output. If this is not already the case, the learner demotes B below A.

The learner must know the input form in order to evaluate faithfulness constraints; in a more

realistic model, some interleaving of input-learning and ranking-learning would be necessary.

Variants of the algorithm accommodate the common proposal that the learner ranks markedness

above faithfulness unless she encounters evidence to the contrary.

The Constraint Demotion Algorithm finds a ranking consistent with the learning data, if

one exists. The algorithm has not been successfully generalized to learn variable grammars (see

below), however, and is not robust to occasional errors in the learning data.

PROBABILISTIC AND VARIABLE OT

Intra-speaker variation is common in language: a speaker may produce an utterance differently

on different occasions. For example, American English speakers optionally produce [nt] as a

nasalized flap (so that ‘winter’ sounds similar to ‘winner’). The desire to capture variability in

OT has led to proposals of variable constraint ranking.

To appear in Michael Arbib, ed., Handbook of Brain Theory and Neural Networks, 2nd edition. MIT Press. 9

Anttila (1995) proposes that a ‘stratified’ constraint ranking is equivalent to all the linear

hierarchies that are consistent with it, and the predicted frequency of a variant is the proportion

of linear rankings that generate it. Suppose a language has the stratified ranking A >> {B, C, D}

(i.e., B, C, and D are freely ranked, but below A), and a candidate a is optimal under both

A>>B>>C>>D and A>>B>>D>>C. The stratified ranking collapses six linear rankings, two of

which produce a, so a should be observed 33% of the time. In a corpus study of Finnish genitive

plurals, Anttila found a good match between predicted and observed frequencies of variants. No

learning algorithm has been proposed, however, for grammars with free rankings.

Boersma (1998) proposes stochastic constraint ranking—ranking that is neither

absolutely fixed nor absolutely free, but probabilistic. Each constraint in an individual’s grammar

has a ranking value in arbitrary units. For every utterance, the speaker generates effective values

for each constraint by randomly perturbing each ranking value slightly. Each constraint is thus

associated with a probability density function centered on its ranking value. Figure 2 illustrates a

mini-grammar in which constraint C1 is nearly always top-ranked, and C4 is nearly always

bottom-ranked, but C2 and C3 are variably ranked, with a preference for the ranking C2 >> C3.

Stochastic constraint ranking captures fine-grained frequencies. In an Anttilian grammar

with three variably ranked constraints, a variant can occur only 0%, 33%, 67%, or 100% of the

time, depending on which rankings produce that variant. In a Boersmian grammar with the same

three constraints, the variant can occur at any frequency, depending on the ranking values of the

constraints. Boersma and Hayes (2001) suggest some cases of very infrequent variants that

would be difficult to capture in an Anttilian model, though firm data remain to be gathered.

An advantage of Boersma’s model is its learnability. Boersma’s Gradual Learning

Algorithm can learn stochastic grammars from variable learning data (if the learning data are not

variable, the rankings values learned are so far apart that the ranking is effectively fixed). In each

learning trial of the algorithm, the learner compares its production to an adult target form. If

there is a mismatch, the learner increments the ranking values of all constraints that prefer the

learner’s incorrect form, and decrements the ranking values of all constraints that prefer the adult

To appear in Michael Arbib, ed., Handbook of Brain Theory and Neural Networks, 2nd edition. MIT Press. 10

form. The algorithm is robust to errors in the learning data; if an erroneous learning datum

nudges a constraint in the wrong direction, subsequent data push it back. The Gradual Learning

Algorithm can also model the course of acquisition. Curtin (2000) shows how, for the acquisition

of prosody, the Gradual Learning Algorithm successfully models variability in children’s

productions, stage-like progression, and the order in which markedness constraints are demoted.

The Gradual Learning Algorithm can learn rates of variation because conflicting variants

exert opposite influences on ranking values. The more frequent variant occurs in more learning

trials, so the relevant constraints’ ranking values are separated to the degree that the variants

differ in frequency. The algorithm is also able to learn rates of lexical variation (situations in

which each word’s pronunciation is stable, but certain words undergo some phonological

phenomenon and others do not), as shown in Zuraw (2000). In Zuraw’s model, the resulting

grammar has high-ranking faithfulness constraints that ensure the correct pronunciation of

existing words, with lexical variation encoded in low-ranked constraints that come in to play in

the production and comprehension of new words.

DISCUSSION

OT was partly inspired by neural networks. The ideas of optimization, parallel evaluation,

competition, and soft, conflicting constraints are familiar. Prince and Smolensky (1997) discuss

the implementation of OT in a neural network. Constraints are implemented as connection

weights, and the network implements a Lyapunov function that maximizes ‘harmony’ (Σij aiwijaj:

the sum, for all pairs i, j of neurons, of the product of the neurons’ activations and their

connection weight). Hierarchically structured representations (e.g., consonants and vowels

grouped into syllables) can be represented as matrices of neurons, where each matrix is the

tensor product of a vector for a linguistic unit and a vector for its position in the hierarchy.

Implementing strict domination (rather than the usual numerical weighting) of constraints

remains unsolved, so translation between OT grammars and neural networks is not in general

possible, however.

To appear in Michael Arbib, ed., Handbook of Brain Theory and Neural Networks, 2nd edition. MIT Press. 11

REFERENCES

Albright, A. and B. Hayes, 1999. An automated learner for phonology and morphology,

manuscript, University of California, Los Angeles.

Anttila, A. 1997. Deriving variation from grammar: a study of Finnish genitives, in Variation,

Change, and Phonological Theory, (F. Hinskens, R. van Hout, and L. Wetzels, eds.),

Amsterdam: John Benjamins, pp. 35-68.

Boersma, P. 1998. Functional Phonology, The Hague: Holland Academic Graphics.

*Boersma, P. and B. Hayes. 2001. Empirical tests of the Gradual Learning Algorithm, Linguistic

Inquiry, 32: 45-86.

Curtin, S. 2001. Enriched Lexical Representations and Constraint Organization in a Developing

System, Dissertation, University of Southern California.

Eisner, J. 1997. Efficient generation in primitive Optimality Theory, in Proceedings of the 35th

Annual Meeting of the Association for Computational Linguistics and the 8th Conference of the

European Association for Computational Linguistics, San Francisco: Morgan Kaufmann, pp.

313-320.

Eisner, J. 2000. Directional constraint evaluation in Optimality Theory, Proceedings of the 18th

International Conference on Computational Linguistics (COLING 2000), San Francisco: Morgan

Kaufmann, pp. 257-263.

*Kager, R. 1999. Optimality Theory. Cambridge: Cambridge University Press.

To appear in Michael Arbib, ed., Handbook of Brain Theory and Neural Networks, 2nd edition. MIT Press. 12

*Legendre, G., J. Grimshaw and S. Vikner, eds., 2001. Optimality-Theoretic Syntax. Cambridge,

MA: MIT Press.

McCarthy, J. 2001. A Thematic Guide to Optimality Theory, Cambridge: Cambridge University

Press.

Prince, A. and P. Smolensky, 1993. Optimality Theory: Constraint interaction in generative

grammar, Rutgers Center for Cognitive Science Technical Report TR-2 [see Kager 1999 for

textbook treatment].

*Prince, A. and P. Smolensky, 1997. Optimality: from neural networks to universal grammar,

Science, 275: 1604-1610.

Tesar, B. and P. Smolenksy, 2000. Learnability in Optimality Theory, Cambridge, MA, MIT

Press.

Wilson, C. 2001. Consonant cluster neutralisation and targeted constraints, Phonology, 18: 147-

197.

Zuraw, K. 2000. Patterned exceptions in phonology, Dissertation, University of California, Los

Angeles.

To appear in Michael Arbib, ed., Handbook of Brain Theory and Neural Networks, 2nd edition. MIT Press. 13

Figure 1

 /ilp/ *CC DON’TDELETE DON’TINSERT

a [ilip] *

b [il] *!

c [ilp] *!

d [ilpi] *! *

To appear in Michael Arbib, ed., Handbook of Brain Theory and Neural Networks, 2nd edition. MIT Press. 14

Figure 2

 C1 C2 C3 C4

high ranking low ranking

pr
ob

ab
ili

ty
 d

en
sit

y

To appear in Michael Arbib, ed., Handbook of Brain Theory and Neural Networks, 2nd edition. MIT Press. 15

Figure 1 caption: OT tableau

Figure 2 caption: Stochastic constraint ranking

	INTRODUCTION
	OT IN LINGUISTIC THEORY
	COMPUTABILITY OF OT
	Generation
	Comprehension
	Learning

	PROBABILISTIC AND VARIABLE OT
	DISCUSSION
	REFERENCES

