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Abstract 

Language change is gradual and takes place at the level of the population, not just at the 

level of the individual. Probabilistic models of language change have attempted to 

account for the spread of a new variant as a result of learners’ responses to a variable 

environment, speakers’ variable behavior, and properties of the population. Aspects of 

change accounted for in this way include the bias of learners towards one variant, the 

spread of a variant from one linguistic environment to another, and the rate of spread over 

time. 



 

1. Properties of a probabilistic model of language change 

In many areas of linguistics it makes sense to study the mental grammar of the individual 

in isolation. Language change, however, cannot be understood solely as something that 

happens within an individual (even if individuals’ grammars do change over their 

lifetimes), but rather must be understood as something that happens in a speech 

community, through the accumulation of interactions between individuals over time. 

Each of these interactions has a probabilistic character: which individuals will interact, 

which variant the speaker will produce, and how the listener’s mental grammar and 

lexicon will be affected. 

 Because language change is not instantaneous at the population level, any well 

developed model of language change must be probabilistic at least in the sense of 

specifying how an individual behaves when surrounded by variation and how that 

behavior in turn affects the rest of the population. In the simplest model, a learner could 

simply adopt the grammar of the first other speaker it encounters (assuming that the 

encounter provides enough information for the learner to identify that grammar). In that 

case, the model is probabilistic only in determining what type of speaker the learner 

encounters. But more realistic models require learning algorithms that can handle the 

learner’s variable environment.. 

 It can be difficult (or misleading) to try to understand how such a model will 

behave without being mathematically explicit about how the model works, and 

examining its behavior under varying conditions, whether analytically—by studying 



properties of equations—or through computer simulation when direct analysis is 

infeasible. Being explicit requires simplifying reality somewhat, and depending on 

researchers’ interests, models are typically more realistic in one area than in others. 

 A model of language must specify what the internal state of an individual looks 

like. First, does an individual have a single grammar that produces no variation, a single 

grammar that produces probabilistic variation, or multiple grammars each associated with 

a probability of use? (“Grammar” here is used loosely to include not only a language’s 

phonology, morphology, and syntax, but also possibly its lexicon.) Second, how is a 

grammar represented? Possibilities that have been proposed include a vector of parameter 

settings, a connectionist network, a cloud of exemplars, or a probabilistic ranking of 

Optimality-Theoretic constraints. 

 It is also vital to specify how an individual’s grammar is arrived at during initial 

acquisition, and how it may change during adulthood; the choice of learning or update 

algorithm of course depends on the nature of the grammar. Once a learning algorithm is 

specified, it is still necessary to consider whether there is a critical period after which 

learning ceases, and if so how much data the learner is exposed to during that period; if 

there is no critical period, the model must specify how plastic the grammar remains as the 

individual ages. 

 Moving to the level of the population, the model must specify who interacts with 

whom. Do children learn only (or preferentially) from their parents? Do all individuals 

interact equally with all members of the population, or is the population structured, 

whether geographically or socially, so that some interactions are more likely than others? 



Does the listener in an interaction treat all data the same way, or is an utterance’s 

influence a function of the speaker’s (and possibly the listener’s) age, the strength of the 

social connection between the two individuals, or even the social status of the speaker? 

Does the speaker’s choice of utterance similarly depend on characteristics of the listener? 

Properties of the population itself must also be decided, such as size, nature of geographic 

and social structure (if any), birth and death rates, and whether these differ as function of 

grammar, geographic location, or status in the social network (see Milroy 1987 on the 

role of social networks in variation and change). 

2. Probabilistic grammars 

It has been well documented that when a linguistic change is in progress, productions 

vary, at rates that increasingly favor the innovative variant, not just across individuals but 

also within individuals (see Labov 1994, 2001; Kroch 2001 and references therein). 

Weinreich, Labov, and Herzog (1968) proposed to model this with variable rules, 

phonological rules that apply not obligatorily, but with a certain probability, which can 

change from generation to generation (see also Paolillo 2001). Little work has been done 

on modeling acquisition in this framework. 

2.1.1 Probabilistic parameter settings 

In syntax, Kroch (1989 and subsequent work by Kroch and colleagues; see Kroch 2001 

for references) has attached probabilities to parameter settings. While change is in 

progress, individuals have nonzero probabilities associated with both settings of some 

parameters. 



 Learning algorithms have been proposed for parameter setting in variable 

environments, but these algorithms generally do not result in a variable grammar. Niyogi 

and Berwick (1995), for example, consider the behaviors of variants of Gibson and 

Wexler’s (1994) Triggering Learning Algorithm when the learning environment contains 

speakers with different grammars; but even in the face of contradictory data, the learner 

chooses a single grammar. In Briscoe’s approach (2000 and references therein), the 

learner also arrives at a single vector of parameter settings, but during learning maintains 

probabilities for those settings, based on both their prior probabilities (universally given) 

and their probabilities in light of the learning data; these probabilities determine how 

easily a parameter setting can be changed in response to further learning data. 

2.1.2 Competing grammars 

Rather than having variation within a single grammar, it is also possible to imagine that 

speakers can maintain multiple, independent grammars, each having some probability of 

use. (As a model of diglossic or bilingual competence, such multiple grammars would 

need to be associated with additional information about their appropriateness in different 

social settings.) Yang (2000) models acquisition of competing grammars in a reward-

penalty scheme. When the learner encounters an utterance, a grammar is selected at 

random according to its current probability. If the grammar can parse the utterance, its 

probability is increased; otherwise, its probability is decreased. 

 Competing full grammars permit a wider range of variation types than grammars 

with probabilistic rules, parameter settings, or constraint rankings. For example, in a 

grammar with parameters A and B, each having possible settings 0 and 1, a speaker who 



maintains separate grammars could use the grammars (0,0) (A = 0 and B = 0) and (1,1), 

each at probability 0.5. But if the speaker associates probabilities not with grammars but 

with individual parameter settings, this will be impossible: if (0,0) and (1,1) are both used, 

then the parameter settings A = 0, A = 1, B = 0, and B = 1 all must have nonzero 

probabilities, so the speaker will sometimes use (0,1) and (1,0) as well. The situation is 

similar for variable rules and constraint rankings. It should be noted that the term 

“competing grammars” is often applied to cases of a single grammar with variable 

parameter settings. 

2.1.3 Probabilistic constraint ranking 

Probabilistic ranking of Optimality-Theoretic (OT) constraints has also been applied to 

both phonological and syntactic change: in this version of OT, a grammar consists not of 

a linear ranking of constraints, but of a probability distribution over possible constraint 

rankings. One such model is Boersma’s (1998) stochastic OT, in which each constraint is 

associated with a ranking value; at the time of generating an utterance, random noise is 

added to each ranking value, and the resulting perturbed values are used to rank the 

constraints linearly. In this theory, learning is accomplished by Boersma’s Gradual 

Learning Algorithm. 

2.1.4 Adaptive rules 

An alternative to probabilistic grammars during language change is the theory of adaptive 

rules (Andersen 1973), in which each individual has a non-variable grammar. But, if that 

grammar represents an innovative departure from the current standard, the speaker 



develops a layer of rules to make her utterances conform to community norms. Such a 

speaker’s adult utterances are just like a conservative speaker’s; the difference is that the 

innovative speaker is “tolerant” of the same innovation in children. These children, facing 

less opposition, would then develop their adaptive rules later in life—meanwhile 

producing utterances with the innovation, which might serve as learning data to younger 

learners—and in turn be even more tolerant of innovation. This process continues until 

the adaptive rules are used only in a special, conservative style associated with the old, 

and eventually the adaptive rule is eliminated entirely. This theory rests on the 

assumption that a child learns not just from adults’ utterances, but also from adults’ 

reactions to the child’s own speech; most models do not share this assumption.  

3. Probabilistic categories 

The probabilistic models of grammar described above rely on discrete categories, such as 

nouns vs. verbs, or [+high] vs. [–high] vowels. In some models of language change, 

however, category membership is itself probabilistic. 

3.1.1 Exemplar-based models 

Pierrehumbert (2002) has explored certain types of phonological change within an 

exemplar-based framework. In exemplar theory, tokens of encountered speech are 

mapped onto a similarity space with dimensions such as duration and formant values, and 

possibly time. Not every token is necessarily stored separately, because the similarity 

space is granular, or discretized into “bins” called exemplars. When a new token is 

encountered, the strength of the exemplar it belongs to is augmented (this could be done 



either incrementally or by giving an exemplar maximum strength whenever a token is 

mapped to it). Countervailingly, exemplar strength decays over time. The learner forms 

categories—corresponding, for example, to members of the ambient language’s vowel 

inventory—by identifying clusters of exemplars. Each category, then, is made up of 

many exemplars of varying strengths. In perception, a category label is attributed to an 

incoming stimulus according to the number of exemplars from each category that are 

similar to it, with a weighting in favor of stronger exemplars. In order to produce an 

instance of a category, an exemplar is chosen at random, but again with weighting in 

favor of stronger exemplars, and neighbors of the chosen exemplar contribute to the 

resulting production in proportion to their strengths; random noise may also be added. 

Lexical entries, moreover, contain weights that are applied to exemplars in production, so 

that one word may “prefer” to be realized with a vowel of long duration, while another 

prefers short duration. 

 Pierrehumbert models Joan Bybee’s discovery that lenitory phonological changes 

(those involving gestural reduction) progress more quickly in high-frequency words. For 

example, English optional schwa reduction/deletion is more advanced in high-frequency 

words such as every, camera, memory, family than in low-frequency words such as 

mammary, artillery, homily (see Bybee 2001 and references therein). Bybee proposes that 

the reason for the phenomenon is that lenition is imposed every time a word is used and 

the lexical entry (of the listener and/or speaker) is updated in response. Since this 

happens more often in high-frequency words, they change more rapidly. Crucial to this 

explanation is allowing lexical entries to have a high degree of phonetic concreteness: in 



the English schwa example, the lexical entry cannot simply be a string of phonemes, 

either containing or not containing a medial vowel. Rather, it must somehow contain 

information about the typical duration range (including zero) of the potential schwa 

vowel, such as through lexical weighting of schwa exemplars. Pierrehumbert’s 

simulations, using repeated rounds of production and perception in the exemplar model 

with an externally imposed constant tendency representing lenition, show that change 

does indeed progress more rapidly in frequent words.  

 Pierrehumbert proposes that a phonetic change can eventually change lexical 

entries at the phonological level. For example, it is plausible that words like family, 

whose phonology allows schwa deletion (sonorants surround the medial vowel) are 

currently nonetheless represented lexically with a medial schwa, just as are words like 

attitude. But if English schwa reduction continues to progress, words like family will 

come to weight short exemplars of schwa so heavily that their schwa productions cluster 

around a very short (or even zero) duration, whereas the schwa productions of words like 

attitude will cluster around a longer duration. Since, in Pierrehumbert’s model, learners 

infer phoneme-like categories from clustering, in subsequent generations the lexical 

entries for the two types of words will refer to different category strings. 

3.1.2 Connectionist models 

Connectionist models of competence have also been applied to language change, by such 

authors as Tabor (1994) and Johansson (1997).  

 Tabor’s model of the grammar/lexicon is associative, with no explicit parameter 

settings or grammatical categories. The model is a connectionist network with three 



layers of nodes: input, output, and hidden. Input nodes represent lexical items, and output 

nodes represent word behaviors, such as taking a certain type of complement. Activation 

of an input node flows to strongly connected hidden-layer nodes, which in turn activate 

strongly connected output-layer nodes; there is no direct connection between input and 

output nodes. Fuzzy grammatical categories, which can be conceptualized as patterns of 

input-node-to-hidden-node connection weight, emerge from similar distribution. Two 

words that would both be classified in a traditional grammar as nouns, for example, have 

relatively similar distributions and therefore similarly weighted connections to the hidden 

units. The use of this network to model language change is discussed in 4 and 5 below. 

4. Constant rate effects 

When a change, such as from SOV (subject-object-verb) to SVO word order, occurs in 

multiple syntactic environments, such as main and subordinate clauses, we can imagine 

different patterns of change. If for some reason the change originates in main clauses, 

SVO could replace SOV fairly quickly there, and more slowly in subordinate clauses, 

perhaps because the change is only gradually being generalized to environments that are 

less similar to the original environment of the change. 

 An alternative, advocated by Anthony Kroch and colleagues, is that when the 

syntactic theory dictates that variation in multiple environments be controlled by the 

same parameter (such as head-complement order), historical replacement of one variant 

by the other should proceed at the same rate in all environments, though it may, for 

poorly understood reasons, begin earlier in some environments than others. This is the 



constant rate hypothesis, and it has been argued to be borne out by numerous case studies 

of syntactic change (see Kroch 2001 and references therein) 

 In order to test the constant rate hypothesis, “rate of change” must be defined. 

Kroch uses the logistic function, 
stk

e
P

−−

+

=

1

1
, to model change, where P is the 

probability of use of the new variant, t is time, and k and s are constant parameters that 

determine when the change begins and how quickly it progresses (see 7.1 below for 

derivation of this function). Algebra transforms this equation into stk
P

P
+=

−1
ln ; we 

see that the logistic transform, or logit, 
P
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ln , is equal to k + st, a linear function of t 

with slope (steepness) s and intercept (starting point) k. Kroch takes the slope s to be the 

rate of change; thus s is expected to be constant across environments. 

 Tabor (1994), however (see 3.1.2), views constant-rate change as merely a special 

case of frequency linkage. When a word or construction’s distribution changes, the input-

output relationship cannot be directly changed in response, since there are no input-to-

output connections; only the input-to-hidden and hidden-to-output connection weights 

can change. When the hidden-to-output weights change because one word or construction 

shifts in distribution, any word or construction with a similar pattern of input-to-hidden 

connection weights is necessarily “dragged along” in the change to some extent. That is, 

words and constructions undergo similar changes in distribution to the degree that their 

previous distributions were similar. Constant-rate cases, for Tabor, are simply extreme 

cases in which two constructions’ initial distributions are highly similar.  



5. Learning biases 

Why are speakers biased to adopt some linguistic innovations, so that they spread, rather 

than faithfully imitating whatever they encounter equally, so that new variants fail to 

spread? Attempts to model such bias have mostly taken one of two approaches. The first 

approach simply assumes that the new variant is preferred by speakers, perhaps because it 

carries social prestige of some kind. This approach is inspired by the sociolinguistic 

research into changes in progress (most phonological) of William Labov and colleagues 

(see Labov 1994, 2001 and references therein; a truly Labovian model would require 

more than merely tagging one variant as preferred.) 

 The second approach, which has been more extensively developed, explores cases 

in which one variant might have a structural advantage over another, usually because it 

generates fewer ambiguous utterances. (See Clark 2004 for another approach—a 

processing filter that skews the data actually usable for learning.) A commonly used 

example is word order. Niyogi and Berwick (1995), for example, model the change from 

Old French verb-second (V2) word order to Modern French subject-verb-object (SVO) 

order. In their simulation, a grammar is represented as a vector of (non-probabilistic) 

binary parameter settings, and language acquisition consists of determining those settings 

based on input utterances. Acquisition would be easy if every utterance uniquely 

identified the grammar it came from, but there are many utterances that could be 

produced by more than one grammar. For example (to use English lexical items), the 

utterance dog bites man is consistent with either a V2 or an SVO grammar, whereas 

suddenly bites dog man is not consistent with SVO and dog suddenly bites man is not 



consistent with V2. We can imagine various strategies that a learner might use in 

response to an ambiguous utterance such as dog bites man: ignore the utterance, 

increment the probability of every grammar consistent with the utterance, or randomly 

choose one grammar consistent with the utterance and augment its probability. A learner 

need not even recognize the ambiguity: under a Triggering-Learning approach, the 

learner changes grammars only if the current grammar fails to parse an incoming 

utterance; an ambiguous sentence will cause no change if the learner’s current grammar 

is consistent with it. 

 Under all these strategies, a grammar is at a disadvantage if it produces a higher 

proportion of ambiguous sentences than a competing grammar does. For example, 

consider a population in which 20% use innovative L1 and 80% use conservative L2. If 

80% of L1’s utterances are unambiguous, compared with 10% of L2’s, then for every 100 

utterances, 16 are triggers for L1 and only 8 are triggers for L2 (76 are ambiguous). 

Although L1 is rarer in the population, from the learner’s point of view there are more 

utterances coming from L1 than from L2. L1 will therefore inexorably encroach on L2. 

 Working in the framework of Stochastic Optimality Theory, Jäger (2003) has also 

modeled learning bias as a source of language change. In Jäger’s variant of Optimality 

Theory, learning data are form-meaning pairs. The learner checks whether its current 

grammar (probabilistically) chooses the observed meaning as optimal given the observed 

form, but also whether its current grammar chooses the observed form given the observed 

meaning. If either type of mismatch occurs, the learner adjusts constraint ranking values 

accordingly, as in Boersma’s (1998) Gradual Learning Algorithm. Jäger simulates the 



behavior of this system through repeated rounds of production and learning, and finds 

that when one type of form is penalized by the constraint inventory more than another 

(regardless of ranking), the “better” form becomes associated to the more frequent 

meaning. This is because if the system begins unbiased, it will tend to use the “better” 

form for both meanings. If the learner’s grammar picks the wrong meaning as optimal, it 

must demote any constraint that disfavors the observed form-meaning pair. The more 

frequent meaning is of course encountered more often, so the constraint against 

associating that meaning to the better form gets demoted more vigorously, and the 

frequent meaning increasingly is produced with the better form. Jäger applies this model 

to case-marking systems dependent on animacy; corpus data on real languages reveals 

pragmatically motivated asymmetries, such as that sentences in which an animate actor 

acts on an inanimate patient are common. Jäger is able to produce the result that zero 

case-marking (which he takes to be favored) tends to become associated with the 

common combinations of animacy and thematic role. 

 Tabor (1994) approaches biases from a different angle, focusing on possible 

trajectories from one grammar to another. Tabor asks why English be going to, on its 

journey from meaning solely ‘be traveling towards’ in Old English to acting as a future 

auxiliary today, passed through the stages it did. Be going to took on new traits one after 

the other, rather than simultaneously increasing the frequency of all those traits: first it 

began to appear with verb-phrase complements (rather than exclusively location 

complements) but with an intentional meaning and with motion plausibly involved (as in 

modern we’re going to fight), then with no motion (he’s going to say something), then 



with lack of intention (he’s going to be fired), then with non-sentient subjects (the chair 

is going to break), and finally with dummy subjects (it’s going to rain). In Tabor’s 

connectionist model (see 3.1.2 above), categories are represented in a continuous space, 

so if an item such as be going to moves from one category to another (by changing its 

input-to-hidden weights), it may pass through other categories on the way. The 

connection weights in the network determine what trajectories through this space are 

possible, and Tabor shows how a plausible model of verb categories would cause be 

going to to pass through the category of equi verbs (which take verb-phrase complements 

but require sentient subjects) on its way from motion verb to raising verb. 

6. Probabilistic aspects of reanalysis 

Reanalysis has been argued to result from frequency shifts that cause a structure to 

become associated with a context that admits or encourages the new analysis (e.g., 

Lightfoot 1991). Others have argued, based on case studies, that reanalysis precedes the 

structural change (Frisch 1994, Pintzuk 1995); in those cases, it is unclear what triggers 

the reanalysis in the first place. 

  Fontana (1993) explores in detail a case in which one syntactic change affects a 

construction’s environment and thus causes another syntactic change. Object pronouns in 

Old Spanish appeared in second position (enclitic on the first word of the clause), but in 

Modern Castilian Spanish they are verbal proclitics. Loss of topicalization in Old Spanish 

led to an increase in clauses beginning with the object pronoun; assuming that object 

pronouns were not able to stand on their own phonologically, these sentence-initial 

pronouns would have been procliticized to the following word. Another change, loss of I-



to-C movement, meant that the following word was often a verb. As the pronouns 

appeared as proclitics on verbs more and more often, they were reanalyzed to be 

permitted in that position only, whether sentence-initial or not. 

 Although the details of the analysis depend on issues in syntactic theory, if the 

basic outline is right, the Spanish situation can be seen as one in which an increasing 

number of forms become ambiguous, being consistent with either the existing grammar 

or an innovative one. The learning algorithm should then predict under what conditions, 

if any, the innovative grammar can take over (see §5 above). 

7. Deriving S-shaped change 

It has long been observed that many historical developments follow an S-shaped pattern 

of change (see Denison 2002 for discussion). At first, a new variant is rarely used, and its 

use increases slowly; in the middle period of the change, the new variant gains ground 

more and more quickly until the two variants’ frequencies are about equal, after which 

point the change slows down; in the late period of the change, the older variant 

disappears more and more slowly and may even persist, at very low frequencies, 

indefinitely. An S-curve is illustrated in Figure 1. 

<Figure 1 near here> 

7.1 Contacts in the population 

Many explanations involving probabilistic interactions among individuals in the speech 

community have been proposed for this pattern of change. One possibility, mentioned by 

Labov (1994, p. 66), is that the S shape of change simply reflects the time-course of 



social contacts. If we assume, for simplicity’s sake, that each individual converts to the 

new variant on first encountering it, a change that originates in one member of a 

population will still take time to spread. At the first time-step, only those who interact 

directly with the innovator “catch” the new variant, and its spread is slow. But as the 

number of speakers with the innovative variant increases, so does the number of speakers 

in contact with them at every time-step, so the spread accelerates, until more than half of 

the speech community uses the new variant, at which point the spread slows because 

there are fewer and fewer speakers left who do not already use the new variant.  

 To see this mathematically, suppose that there are n speakers in the population. 

Let x represent the number of speakers with the new variant at any time; n – x is the 

number of speakers with the old variant. The number of possible pairwise interactions 

between speakers that would result in conversion of a speaker from the old variant to the 

new is simply the number of pairs composed of one new-variant speaker and one old-

variant speaker, or x(n – x). But, at a given time-step, not all those interactions will take 

place. Let p, a number between 0 and 1, represent, for each pair of speakers, the 

probability that they meet at any one time-step. At each time-step, then, the increase in 

speakers with the new variant is px(n – x). When x is small this quantity is small—change 

is slow. For example, with n = 100 and p = 0.01, when x = 1, the number of speakers 

converted to the new grammar is p(n-1) = 0.99, just under one speaker. When x reaches 

n/2 = 50, the rate of change reaches its maximum, pn
2
/4 = 25. When the change is almost 

complete, x = 99, the rate of change is again p(n – 1) = 0.99. 



 If we examine the proportion u (= x/n) of the population that has the innovation, 

the rate of change at every timestep can be written au(1-u), where a (=pn
2
) plays a role 

similar to p’s in determining how frequent contact is. To obtain u as a function of time we 

must solve the differential equation 
dt

du
 = au(1 – u). The solution is of the form u = 

atC
e

−−

+1

1
, where C is a constant. This is the logistic function from §4 above. Setting C so 

that the population starts with 1% of members having the new variant, we obtain the plot 

for a = 0.5 shown in Figure 2. 

 

<Figure 2 near here> 

 

 An S-shaped pattern of spread is still derived if speakers’ adoption of the new 

variant is probabilistic (e.g., each contact with the new variant only increments a 

speaker’s use of it), or if the speech community is organized into a social network, with 

contacts between speakers being governed by social bonds instead of evenly distributed. 

 As discussed above in 5, many authors have constructed models in which the 

tendency of one linguistic variant to spread emerges from learning, rather than simply 

being imposed, and there have been simulation studies (see Niyogi 2004 and references 

therein) investigating under what learning conditions the new variant spreads according 

to an S shape. 



7.2 A caution about rates of change 

Some authors have cautioned that, because of stylistic conservatism, change may appear, 

in the written record, to be slower than it really was. Shi (1989) argues that although the 

rise of the aspectual particle le in Mandarin Chinese appears, from the written record, to 

take about 1000 years, it was actually much more abrupt. Shi argues is that even after the 

rise of le was completed in the spoken language, the written language contained a mix of 

contemporary and classical styles even within documents, so that the rate of le use 

appears artificially low. To obtain the vernacular rate of le use from the written record 

requires factoring out the rate of classical-style use. To do this, Shi tracks the frequency 

of the classical copula/interjective ye. In true classical texts, there are 8 occurrences of ye 

per 1000 characters, so Shi infers that if a text has n ≤ 8 occurrences of ye per 1000 

characters, the probability that a character in that text should be attributed to the classical 

style is n/8. When the number of les is plotted per 1000 putatively non-classical 

characters instead of per 1000 raw characters, the change is completed in at most 200 

years. When change is so abrupt, it becomes difficult to determine whether the S shape is 

a good fit. 

8. Model dynamics 

Niyogi (2004) demonstrates some unexpected properties of population-level models of 

language change that would be difficult to intuit. Let us consider one example that uses a 

cue-based learning algorithm. Cue-based learning (Dresher & Kaye 1990) relies on the 

idea that certain sentences generated by a grammar could not come from any other 

grammar, and thus serve as unambiguous cues to the learner as to which grammar it 



should choose. (On a smaller scale, a cue may also be partial, demonstrating 

unambiguously the setting of some parameter but being irrelevant to other aspects of the 

grammar.) For simplicity, assume that the learner faces a binary choice between two 

grammars, L1 and L2. Cue-based learning typically establishes one choice as the default 

(say L2) by specifying that unless some minimum rate of L1 cues is encountered, the 

learner will choose L2. Varying the probability p that a speaker of L1 produces a cue, we 

can see how the proportion of the population that eventually acquires L1 (given infinite 

time) is affected. Niyogi finds that for small values of p, the population moves towards 

total L2 use. In dynamical-systems terms, 0% L1 use is the only stable fixed point for 

these low values of p—all other states will eventually move to 0% L1 and stay there. If 

we examine increasing values of p, at some critical point (determined by the number of 

utterances in the critical period and the rate of cues that the learner requires before 

choosing L1) there emerges a second stable fixed point of 100% L1 use, as well as an 

unstable fixed point somewhere between 0% and 100%. That is, at higher p, a population 

that has little L1 use will still move to 0% L1 (since there are few utterances produced 

from L1), but a population with more than some minimum number of L1 speakers will 

now move towards 100% L1
 
use and stay there; additionally, there is some intermediate 

proportion of L1 use that can persist, but if the population diverges slightly from that 

value, it will be pulled towards 0% or 100% L1 use. This is an example of a bifurcation: a 

small change in a parameter (here, p) results in a sudden change in the behavior of the 

system. Niyogi suggests that the potential for bifurcations helps address the actuation 

problem of Weinreich et al. 1968 (i.e., why does a language change start?): a small 



change in the system, perhaps brought about by external forces such as population 

movements or cultural changes that change the frequency with which certain types of 

propositions are expressed, could lead to dramatic linguistic change. The calculations that 

Niyogi performs to arrive at the bifurcation result demonstrate the importance of making 

the model fully explicit—otherwise, its behavior cannot be seriously studied. 
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