
Seoul National University Linguistics: seminar on quantitative models of phonological variation

Kie Zuraw (UCLA), September 2012

10 Sept. 2012 1

Class 6: GLA II; lab

Overview: Some computational issues with the GLA; proposed solutions. Then a lab to practice

using the GLA.

1 Convergence

• Suppose for simplicity that our job is to assign numbers (like ranking values) to just two

constraints (horizontal axes in pictures below)

� ...and minimize some error rate that we can quantify (vertical axis).

• The graphs below represent the error rate that we will find for each pair of ranking values

� But, our learning algorithm doesn’t have direct access to these pictures

• Typical “hill-climbing” approach:

� Choose a pair of ranking values at random

� Determine which direction is “downhill” from there on the vertical axis

� A simple way to do this is to sample a ring of nearby points
1

� Take a step in the downhill direction
2

� When the error rate stops going down, stop.

o Let’s think about what will happen if we apply hill-climbing to these two situations.

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 -2
-1.5

-1
-0.5

0
0.5

1
1.5

2

0

1

2

3

4

5

6

7

8

3

-2
-1

0
1

2
3

-3

-2

-1

0

1

2

30

5

10

15

20

4

1
 In some cases, the algorithm knows enough about the error function to use calculus to find which direction is

downhill.
2
 The size of the step can be constant or it can depend on how steep the error slope is.

To do for Thursday

• Reading for Thursday is Coetzee 2009

� Your reading question: take one tableau from your own data where the result is invariable.

� If you have no data like that, use one of the invariable cases from Anttila’s Finnish data.

� Find weights for the constraints that produce the correct winning candidates.

� It will probably help to implement the tableau in Excel so that you can easily change the

weights until you find good ones.

� Turn in a tableau like the one on Coetzee’s p. 274 (on the right).

• Reading for Friday is section 4.7 of Martin 2007.

� If you want to get a head start, your reading question will be: Why does adding the “Gaussian

prior” to the expression that MaxEnt is maximizing help avoid overfitting?

• Decide whether you want to give a brief presentation on your data in the last class session. On

Thursday in class we’ll make up the schedule for the last day. Based on what you’ve turned in

and our conversations, I think everyone should make a presentation!

Seoul National University Linguistics: seminar on quantitative models of phonological variation

Kie Zuraw (UCLA), September 2012

10 Sept. 2012 2

• Ideally, we want a situation as on the left:

� There’s exactly one point from which every direction is uphill.

� A learning problem like this is called “convex”—computer scientists like convexity

• If a learner keeps going downhill and never stops (except maybe because we tell it to stop

after 10,000 steps), it has failed to converge.

o What would the error function have to look like for that to happen?

• The learner could also fail to converge because it doesn’t always go downhill

• If a learner converges but didn’t find the lowest point, we say that it got stuck in a local

minimum or local optimum instead of finding the global optimum.

By the way, here’s the plot for our (th) ‘thick’ example.

 Error measure is | predicted[t]̪rate – 0.9 |:

97
98

99
100

101
102

103

97
98

99
100

101
102

1030

0.2

0.4

0.6

0.8

1

5

2 Gradual Learning Algorithm?

• For the original GLA, there was no proof of convergence or, if it converges, of finding

the global optimum.

• Pater 2008 pointed out a type of case that is problematic (the “credit problem”).

Suppose 6 constraints: NOCODA, ONSET, *VOICEDOBSTRUENT, *ɛ#, MAX-C, DEP-C

o Determine the constraint ranking for this language and fill in the tableaux

 /da/

� a da

b a

 /lob/

c lob

� d lo

 /tɛf/

� e tɛf

f tɛ

 /kɛ/

g kɛʔ

� h kɛ

3

 Octave commands: [x,y]=meshgrid([-2:.2:2]); Z=x.^2+y.^2; mesh(x,y,Z) . Based on

www.mathworks.com/help/techdoc/visualize/f0-18164.html
4
 [X,Y,Z]=peaks(30); mesh(X,Y,Z+7) . Based on www.mathworks.com/help/techdoc/ref/surfc.html

5
 [x,y]=meshgrid([97:0.2:103]); Z=abs(0.9-normcdf(x-y,0,sqrt(2))); mesh(x,y,Z).

Seoul National University Linguistics: seminar on quantitative models of phonological variation

Kie Zuraw (UCLA), September 2012

10 Sept. 2012 3

o Let’s think about what the GLA will do for each of these tableaux when it makes a

mistake during learning

⇒ Now let’s try it in OTSoft (I have an input file prepared)

3 The Revised GLA: Magri to appear

• Suppose current plasticity is 1.

• Suppose the learner makes some errors like these.

� I’ve included the amount by which regular GLA will change each ranking value

 /inputA/ constraint1 constraint2 constraint3 constraint4

desired (adult) winner candA1 * (-1)

grammar-in-progress’s

current winner

candA2 * (+1)

 /inputB/ constraint1 constraint2 constraint3 constraint4

desired (adult) winner candB1 * (-1)

grammar-in-progress’s

current winner

candB2 * (+1) * (+1)

 /inputC/ constraint1 constraint2 constraint3 constraint4

desired (adult) winner candC1 * (-1)

grammar-in-progress’s

current winner

candC2 * (+1) * (+1) * (+1)

• Magri’s revised GLA says instead that the winner-preferring constraints have to share the

credit:

 /inputA/ constraint1 constraint2 constraint3 constraint4

desired (adult) winner candA1 * (-1)

grammar-in-progress’s

current winner

candA2 * (+1)

 /inputB/ constraint1 constraint2 constraint3 constraint4

desired (adult) winner candB1 * (-1)

grammar-in-progress’s

current winner

candB2 * (+0.5) * (+0.5)

 /inputC/ constraint1 constraint2 constraint3 constraint4

desired (adult) winner candC1 * (-1)

grammar-in-progress’s

current winner

candC2 * (+0.33) * (+0.33) * (+0.33)

• What if there is more than one constraint that prefers the losing candidate?

� We still demote each loser-preferring constraint by 1

� But we promote each winner-preferring constraint once for every loser-preferring

constraint

� In other words, if l is the number of loser-preferring constraints and w is the number

of winner-preferring constraints,

� Demote each loser-preferrer by 1

� Promote each winner-preferrer by l/w

• See Magri’s paper for the proof that this algorithm does converge (not easy reading!)

Seoul National University Linguistics: seminar on quantitative models of phonological variation

Kie Zuraw (UCLA), September 2012

10 Sept. 2012 4

o OTSoft can’t implement Magri’s algorithm (yet), but let’s think through how this would

help with Pater’s case.

See also this web page of Paul Boersma’s: www.fon.hum.uva.nl/paul/gla/, for a bibliography

and discussion of when and how often GLA and other error-driven algorithms will fail.

Part II: lab

4 Experiment to see what the menu option “Present data to GLA in exact

proportions” does

• Download any OTSoft-formatted input file from the class webpage (Dutch, Navajo,

Finnish...whatever you like), or use your own data

• Run the GLA on it in OTSoft

� run the learner with menu option Options > Present data to GLA in exact

proportions selected

� look at the results

� run it with that option not selected; look at the results

• Can you see what the learner is doing differently?

� Hint: look at the “input #” column in the results

5 Track ranking values over time

• For this one, use your own data

• Run the GLA on it, using whatever parameter settings you like, except...

� Choose the option Options > Print file with history of ranking

values

• Inside the folder that OTSoft has created (its name should include the name of the input

file), there is now a file called YourInputFileNameHistory.xls

• Open it in Excel and take a look

• Make a graph of the ranking values over time in Excel

• This part will take some time:

� Choose about 25 timesteps from your ***History.xls file.

� Choose 3 or 4 tableaux from the input file that you’re interested in

� Make an Excel file that looks like this (except with all 26 rows):

timestep
rate of adjacent
harmony

rate of distal
harmony

rate of adj harmony
in SHALA

rate of distal harmony in
KISHALA

0

1

2

...

24

25

� For each timestep, run the GLA in OTSoft...

� Use Initial rankings > Edit file for fully customized

initial ranking values to set the ranking values to those of the current

timestep

� For timestep 0, use your actual initial rankings values (e.g., all 100s)

� Set Number of times to go through forms to 0 (no learning)

Seoul National University Linguistics: seminar on quantitative models of phonological variation

Kie Zuraw (UCLA), September 2012

10 Sept. 2012 5

� Use your results file to fill in, for each timestep, how often the candidate you’re

interested in won:

timestep
rate of adjacent
harmony

rate of distal
harmony

rate of adj harmony
in SHALA

rate of distal harmony in
KISHALA

0 0.501 0.253 0.453 0.135

...

• Make a graph in Excel of your learner’s outputs change over time.

• You probably will want to save these files, for possible later use in a presentation.

6 Model comparison with cross-validation

• This one will also take some time

• If you’re a programmer, you’ll see that you can easily write a program for yourself to

automate this.

• But for now, so that everyone can try it, I’ve created an Excel file to help you do 10-fold

cross-validation.

• Download and open the Excel cross-validation spreadsheet from the class webpage.

• Make 20 copies of the OTSoft input file that contains your data.

• Add to the file names something like “train1”, “test1”, “train2”, “test2”... “train10”,

“test10”

• Open the original OTSoft input file and paste its contents into the cross-validation

spreadsheet in cell AJ2 (if you paste into the wrong place, it won’t work):

• Your data have been divided into 10 random slices of approximately equal size.

• In your “train1” file, change the frequencies to the numbers from the “TRAIN fold1”

column (column 0), and similarly for the other 19 files.

• Now you are ready to compare different GLA parameter settings for your data

• Run the GLA on your 10 “train” files, using the same parameter settings.

� This will give your 10 results files with final ranking values

� For each “test” file, run the GLA with the initial ranking values from the

corresponding “train” file results, but set “Number of times to go through forms” to 0

� In a spreadsheet or some other file, write down the accuracy for each “test” file

Seoul National University Linguistics: seminar on quantitative models of phonological variation

Kie Zuraw (UCLA), September 2012

10 Sept. 2012 6

• Now run the GLA again on the same 10 “train” files, but change something in the

parameter settings

� You could change the initial ranking values, or change the plasticity schedule, or

change the constraints...

� It’s better to change only one thing—if you want to try another change, do this

procedure instead

The file where you keep your results might look like this:

 average error per candidate

fold initial values = 100,

initial plasticity = 2

final plasticity = 0.02

5000 learning trials

initial values

= 50 for faith,

100 for mark

initial plasticity = 2

final plasticity = 0.02

5000 learning trials

 initial values = 100,

initial plasticity = 1

final plasticity = .01

5000 learning trials

 initial values = 100,

initial plasticity = 2

final plasticity = 0.02

10000 learning trials

1 0.23121 0.339097 0.10259 0.313654

2 0.273329 0.34808 0.172439 0.265392

3 0.203475 0.372748 0.135748 0.315946

4 0.208444 0.338935 0.161818 0.285827

5 0.268028 0.348117 0.194969 0.276292

6 0.242403 0.331804 0.186735 0.310904

7 0.296243 0.316736 0.160914 0.290142

8 0.2636 0.335112 0.109037 0.311412

9 0.283604 0.377543 0.152997 0.340538

10 0.287223 0.365562 0.107381 0.253428

mean 0.255756 0.347373 0.148463 0.296354

I was going to have us do this on the Finnish data, with different sets of constraints, but now I

think it makes more sense for you to work on your own data.

Save all your output files!! They will be useful for your presentation.

Next time: A quite different type of quantitative OT: constraint weighting—different because it

can’t be translated into a probability distribution over classic OT rankings!

References

Magri, Giorgio. to appear. HG has no computational advantages over OT: towards a new

toolkit for computational OT. Linguistic Inquiry.

Pater, Joe. 2008. Gradual Learning and Convergence. Linguistic Inquiry.

