Class 16: Phonology-lexicon and phonology-processing interfaces

To do

□ last homework, phrasal phonology, due Friday

Overview: We'll look at a bunch of phonological phenomena that show frequency effects—including a case from my own research—and consider where in our model of language those effects could reside.

1 Classic frequency effect: English irregular past tense

- There are only about 200 of them, but they are disproportionately likely to be frequent (e.g., Bybee & Slobin 1982).
- Top 25 most frequent verbs (Oxford English Corpus)—irregulars are in bold:

1.	be	8. know	15. give	22. feel
2.	have	9. take	16. use	23. try
3.	do	10. see	17. find	24. leave
4.	say	11. come	18. tell	25. call
5.	get	12. think	19. ask	
6.	make	13. look	20. work	
7.	go	14. want	21. seem	

• Locus of explanation?

Diachrony

- In order to learn an irregular past tense form, you have to be exposed to it enough times
 → low-frequency verbs will tend to regularize from one generation to the next (*bode > bided*).
- Kirby 2001: simulation study

Processing

- Dual-route model (see Pinker 2000 for overview and application to this case)
 - When you want to say a past tense, there's a race between retrieving a stored form (which might be irregular) and creating the form via the *-ed* rule.
 - The more frequent the stored form, the higher its resting activation \rightarrow more likely to win the race.
 - \rightarrow low-frequency verbs may get pronounced as regular, even if speaker knows irregular form.

Grammar?

- I don't think anyone has proposed it for *this* case, but it's a logical possibility:
 - Some constraints are sensitive to frequency.

/bowd/, cf. [bajd]	I-O FAITH(hi freq)	O-O FAITH	I-O FAITH(lo freq)
bowd		*!	
൙ bajd i d			*

or split O-OFAITH by frequency.

• Or there's just one I-O FAITH constraint, but its ranking is a function of frequency

With these three possibilities in mind, let's look at some more phonological cases and how they've been analyzed.

2 Ng 2010: Singapore English prosodic boundaries

- Singapore English has strong glottalization at prefix-stem, stem-stem, but not stem-suffix boundary
 - mis-understand [mis?andəstæn], stop-over [stop?ovə], magic-al [mædʒikØəu](p. 8)
 - ? Ng analyzes this in terms of p-word structure: let's sketch it out

tone rules: pp. 11-13

- Stress is realized as tone: (L₀M*M₀)H or H
 - last syllable is H, whether stressed or not: *see* ¹H
 - first (non-final) stressed syllable gets M tone: *apple* 'MH
 - sylls from first stress to penult get M: *elephant* 'MMH, *Indonesia* 'MM₁MH
 - syllables preceding first stress get L: hibiscus L'MH, machine L'H, America L'MMH
- Domain of tone assignment \approx p-word
 - tone pattern generally re-starts in compounds: century egg (¹MH)(₁H)
 - tone pattern may or may not restart at prefix-stem boundary: $un-install(_{H})-(L'H) \sim (L-L'H)$
 - tone doesn't restart at stem-suffix boundary: remove-able (L'MMH)
- Much interesting analysis follows, but let's focus on initialisms (e.g. *NUS* 'National University of Singapore')
 - Initialisms show varying degrees of prosodic merger:

Society for the Prevention of Cruelty to Animals, Anglo-Chinese Junior College, National Registration Identity Card, National Trade Unions Congress (supermarket)										
		Least merger	•		Most merger					
a.	SPCA	((((('H),H),H),H))								
b.	ACJC	((((('H),H),H),H)))	((('H),H),MH)							
c.	NRIC	((((('H),H),H),H)))	((('H),H),MH)	(('H),MMH)						
d.	NTUC	((((('H),H),H),H))	((('H),H),MH)	(('H),MMH)	('MMMH)					

(p. 23)

• Ng finds a correlation between which group an initialism belongs to and its number of Google hits.

Why?

• Ng notes that frequency determines speed of production, perhaps because of faster access (see Bell et al. 2009 for more about possible mechanisms):

(p. 31)

- Constraints are then sensitive to speed, e.g. "Grammatical word accessed at speed *n* allows only *n* levels of stress"
 - Result is a prosodification of higher-frequency words that results in fewer stresses.
 - This is an interesting way of removing the need for the grammar to refer to frequency
 - Predicts that if we can manipulate speaking rate independent of word frequency, we'll get similar effects.

$[[M][O][E]]_{S_2}$	Wrap	*SClashs	Stress
- a. ((M) OE)			*
b. (('M) O E)		W*	L
c. (('M)('O)('E))		W*	L
d. ('M)('O)('E)	W*		L

accessed at "speed 2" (S₂), so allows only two levels of stress (b and c have tertiary stresses)

(p. 33)

(58) Do not restore faithful stress to destressed initialisms

3 Hammond 1999: English rhythm rule

- thìrteen mén or thirtèen mén?
 - In survey, shift is more likely if adjective is more frequent: *nàive friend* vs. *obèse child*
 - Hammond proposes <u>morpheme-specific faithfulness constraints</u>, whose ranking depends on the word's frequency.

4 (Löfstedt 2010): frequency-specific constraints

• We saw these earlier: Famous paradigm gaps in Swedish result when vowel shortening produces too much of a quality change.

STEM bl[o: _T] v[i: _T]t v[i: _T]d	$\frac{\text{NEUTER}}{\text{bl}[\mathfrak{I}_L] + t}$ $v[I_L] + t$ $v[I_L] + t$	GLOSS 'blue' 'white' 'wide'	quality <u>T</u> ense big	change (from to <u>L</u> ax) is not to	n D				
			(p. 152)						
STEM	NEUTER	GLOSS	ALLÉN (PL)	GOOGLE (-A)		quality change (would be			
gr[a:]d	INEFFABLE ⁵¹	'straight'	0	7,140		from [d:] to [a]) is too big			
l[a:]t	INEFFABLE	'lazy'	0	581,000					
					(p.	154)			
But! Suffici	But! Sufficiently frequent words don't have a gap								
gl[a:]d	gl[a]+t:	'happy	, 29	2,110,000	٦				

- (p. 154)
- For each of the vowels that can show a gap, there seems to be a frequency cut-off above which there's no gap. (Löfstedt shows this for some phenomena in other languages too) E.g.,

STEM	NEUTER	GLOSS	ALLÉN (PL)	0000LE (-A)	
gr[a:]d	INEFFABLE ⁵¹	'straight'	0	7,140	frequency counts from
l[a:]t	INEFFABLE	'lazy'	0	581,000	different corpora
gl[a:]d	gl[a]+t:	'happy'	29	2,110,000	
					(p. 154)

Löfstedt's solution: faithfulness constraints penalizing vowel changes are indexed to frequency: •

	/glad + t:/ 'happy' neut. Cf. [gla:d] (<i>Freq</i> /glad / = 2,110,000)	σ _{µµ} ⇔ [+stress]	[+LONG] ↔	IDENT [Long C] /V_	*MAP (a,a) (7140)	*MAP (a,a) (581,000)	M-PARSE	*MAP (a,a) (2,110,000)
a.	gla:t:	*!						
b.	glat:		*!					
c.	gla:t			*!				
d. >	glat:							*
e.	0						*!	

(p. 167)

Boersma 1999: lexical-access constraints 5

- The problem: in Dutch, you want to be able to recognize [rat] as either /rat/ or /rad/. •
- If you try to use a standard grammar to map perceived form to underlying form, you'll always pick • the faithful one:

(7)	Failure	to	recognize	the wheel	
-----	---------	----	-----------	-----------	--

[rat]	*VoicedCoda	MAXVOI
*🖙 * rɑt 'rat'		
rad 'wheel'		*

This is a comprehension tableau: input = perceived phonetic form output = lexical entry

(p. 4)

- So, Boersma proposes a family of constraints *LEX(x) "don't recognize any utterance as lexical item ٠ *x*" (one for each lexical item).
- Ranking depends on word's frequency:

(10) A :	0) A strong tendency to recognize the rat												
	[rat]	*LEX (rad 'wheel')	*Voiced Coda	MaxVoi	*LEX (rɑt 'rat')								
	cङ ∣rɑt∣ 'rat'				*								
	rad 'wheel'	*!		*									

Actually, it's a bit more complex: *Lex(*x*/context=*y*) to allow for semantic context to matter

(p. 5)

6 (Zuraw 2009): Tagalog tapping

• This is work that Kevin Ryan and I got started on—he did all the phonetic work.

Tapping in prefixed Tagalog words: variable

 $d \rightarrow r$ (spelled *r*) / V_V *dumi* 'dirt' *ma-rumi* 'dirty' but *dahon* 'leaf' *ma-dahon* 'leafy'

• Each word seems to have a consistent behavior (using spelling data in corpus):

Not shown in this graph: The more frequent the word, the more likely tapping is.

Tapping in suffixed words: obligatory

lakad 'walk' *lakar-an* 'to be walked on'

Tapping in p-word reduplication: nearly forbiddendala 'carry'dala-dala 'load carried'

The grammar probably has to enforce the change here, since even low-frequency words undergo.

Even high-frequency words (D and E) rarely show tapping. (only 84 word types, though)

 \rightarrow Maybe grammar should prevent the change from applying in this context.

Ling 201A, Phonology II, Kie Zuraw, Winter 2018

2009 analysis: grammar refers to outcome of lexical access

- ALIGN(AccU,L; PWd,L): L edge of any accessed lexical unit must coincide with L edge of some p-word.
- \rightarrow outcome for prefixed word depends on access mode:¹

	<i>accessed:</i> maDami		MINIMALITY	STEMISHEAD	Align (AccU, L; PWd, L)	Norecursion	л*
(1)	g (ma(dami) _{ω}) _{ω}					*!	
	h (ma(rami) _{ω}) _{ω}					*!	*
	i (madami) $_{\omega}$	*!					
	🖙 j (marami)ω						*
	k (ma) $_{\omega}$ (dami) $_{\omega}$		*!				
	l ((ma) $_{\omega}$ dami) $_{\omega}$		*(!)	*(!)		*	

more-frequent word: whole-word retrieval route should tend to win.

• Outcome for suffixed words is fixed, because constraint that refers to access mode is low-ranked:

		<i>accessed:</i> lakaD, an, (<i>and maybe</i> lakaDan)	(···ApA···) *	MINIMALITY	STEMISHEAD	Align (AccU, L, PWd, L)	NoRecursion	*r
(2)	а	$(lakad(an)_{\omega})_{\omega}$		*(!)	*(!)		*	
	b	(lakadan) $_{\omega}$	* •			*		
	C	(lakaran) $_{\omega}$				*		*
	d	(lakad) $_{\omega}$ (an) $_{\omega}$		*!				
	е	((lakad) $_{\omega}$ an) $_{\omega}$				*	*!	

¹ Access route should depend on more than just word frequency. See (Hay 2003).

• Similarly, outcome for 2-syll reduplicated words is fixed:

	<i>accessed:</i> DalaDala		(vbv) *	MINIMALITY	StemIsHead	Align (AccU, L, PWd, L)	NoRecursion	Лх
(3)	h	$[(dala(dala)_{\omega})_{\omega}]_{\varphi}$			*!		*	
	i	[(dalarala) $_{\omega}]_{\phi}$			*!			*
	° j	$[(dala)_{\omega}(dala)_{\omega}]_{\varphi}$						
	$ \begin{array}{c} k [(dala)_{\omega}(rala)_{\omega}]_{\varphi} \\ I [(dala)_{\omega}]_{\varphi}[(dala)_{\omega}]_{\varphi} \end{array} $							*!
	$m [(dala)_{\omega}]_{\varphi}[(rala)_{\omega}]_{\varphi}$							*
	п	$[((dala)_{\omega} dala)_{\omega}]_{\varphi}$			*!		*	

⁽same outcome if Dala accessed)

Is any of this really online? Or is it all lexicalized (reflecting diachronic effects)?

• Weak, non-linear frequency effects: all word+clitic combinations

ako raw ~ ako daw 'me, reportedly' *ako din ~ ako rin* 'me too'.

just the clitic+clitic combinations

Ling 201A, Phonology II, Kie Zuraw, Winter 2018

Similar results vowel-height alternation

halo 'mixture' halo-halo ~ halu-halo '(a dessert)' (final-syllable [0] alternates with non-final syllable [u])

• 'o' forms are mostly in lowest-frequency reduplicated words:

- Grammar matters too: strong reduplicative identity effect
 - if second copy is forced to be [u] by suffixation, first copy is usually [u] too (*ka-tapus-tapus-an* 'very last')

Similar results for nasal substitution

(see (Zuraw 2010) for more on this rule)

- Prefix-final nasal can fuse (or not) with following obstruent: /paŋ+pasko/ 'for Christmas'
 - a. non-assimilation paŋ-pasko <pang-pasko>
 b. assimilation pam-pasko <pam-pasko>
 c. nasal substitution pamasko <pamasko>
- Which obstruent it is matters a lot:

• But within the /b/s, where there are plenty of both types, frequency matters:

So where is this effect, really?

- Giving grammar a role seems to work well.
- But what if the grammatical effects be achieved by a diachronic model? Maybe this is all just information stored in lexical entries, perhaps reflecting lexical-access events from long ago.
- If lexical access really is involved, it should be possible to affect a word's pronunciation through priming (temporarily perturbs the item's activation).
 - We think it does! Zuraw, Lin, Yang & Peperkamp (in preparation)

7 More proposals in which grammar refers (at least somewhat) directly to frequency

- Can we think of ways to determine whether grammar makes direct reference to frequency, or sees only to the outcome of lexical access?
 - Coetzee 2008: a lexical item's frequency determines how likely it is to be assigned to a given lexical class on any production occasion
 - Myers 2005: how can lenition be both postlexical and sensitive to lexical frequency?
 - proposes a diachronic solution, where high frequency results in a more lenited lexical entry over time, but plays no synchronic role
 - diachronic and synchronic explanations should make different predictions about effects of priming on production...
 - Alcantara 1998 (English): high-frequency exceptions can be protected by high-ranking idiosyncratic constraints
 - Carlson & Gerfen 2011 (not a proposal about grammar, but a cool case): when a Spanish diphthong loses stress (say, because of suffixation), it should monophthongize. But it's variable:

S	ТЕМ	DERIVED FORM		
n[jé]ve verg[wé]nza v[jé]jo p[wé]blo cal[jé]nte	'snow' 'shame' 'old' 'town, people' 'hot'	n[e]vóso verg[o]nzóso v[je]jecíto p[we]blíto cal[je]ntíto cal[e]ntíto	'snowy' 'embarrassing' 'little old man' 'little village' 'warm/cozy'	

(p. 512)

The more productive the suffix (by corpus measures), the more likely to keep the diphthong.

• Gouskova & Roon 2008: in Russian compounds, the constraint requiring each stem to bear a prominence is ranked low, but there's a higher-ranked version of the constraint for low-frequency stems, forcing a secondary stress:

Ling 201A, Phonology II, Kie Zuraw, Winter 2018

If we have time, here's one more proposal I'd like to discuss...

8 Bermúdez-Otero 2012 forthcoming: two types of listing

- Non-analytic listing: output of stem level goes into the lexicon (fully prosodified)
 - blocks application of stem-level phonology, e.g. stress assignment, if faithfulness ranked high
 - \rightarrow allows exceptional stress to survive (*Árabic*)
 - listed form blocks morphosyntactic synthesis (you can't just compose Arab+ic or drive+d)
- Analytic listing: output of word level may go into the lexicon, but is listed as a concatenation of inputs to the word level
 - example: <LOAD, PAST> = $[_{WORD \ LEVEL} [_{p-word} (l \partial^{\mu} U^{\mu} d)] d] (p. 23)$
 - unable to block application of word-level phonology, e.g. [-d]~[-t]~[-id] allomorphy
 - \rightarrow no exceptions to word-level phonology allowed
- vs. plain old computation

Illustrated with a classic example

- *-al* is a stem-level suffix
 - so *loríginall* is listed non-analytically
- if you then want to derive *originality* (if you'd never heard it), you have to start with */original/*can't start with */origin+al/*
- faithfulness is ranked high: $/oríginal+ity/ \rightarrow originálity$, not *iriginálity (cf. abracadábra)

listed stem-level			
output: has full	[₀ o[∑° rí.gi]nal] - ity	$MAX-Head(\Sigma)$	Align(ω ,L; Σ° ,L)
$\begin{array}{c} \text{prosodification} \\ (\Sigma = \text{foot}) \end{array}$	[_ω [_{Σ°} ò.ri]gi[_{Σ°} ná.li]ty]	*!	
	$[_{\omega} o[_{\Sigma^{\circ}} \mathbf{r}i.gi][_{\Sigma^{\circ}} n \acute{a}.li]ty]$		*

(p. 28)

Chung's generalization (from Chung 1983)

- A stem-level process can "cyclically misapply" iff it can have lexical exceptions in monomorphemes
- Bermúdez-Otero's OT interpretation:
 - High-ranking faithfulness are needed to ensure $/original+ity/ \rightarrow originality$ (= cyclic misapp.)
 - This means you could have monomorphemic exceptions to the 'abracadabra rule' too: *Epàminóndas*, apparently (ancient Greek statesman)

			$MAX-Head(\Sigma)$	ALIGN($\omega, L; \Sigma^{\circ}, L$)	$\operatorname{ALIGN}(\Sigma^\circ,R;\omega,R)$
(a) default pattern: ččč[na ć]o	$\left[{}_{\scriptscriptstyle (\!$			1!	2+1=3
(a) acjanic parcern. 000 [2:0]0	$\left[_{\omega}\left[_{\Sigma^{\circ}}\check{\sigma}\check{\sigma} ight]\check{\sigma}\left[_{\Sigma^{\circ}}\check{\sigma} ight]\sigma ight]$	- EU			3+1=4
(b) manttion [a[-, cà tha][-, á]aia]	[_ω [_{Σ°} à.po]the[_{Σ°} ó]sis]		1!		3+1=4
(b) exception: $[_{\omega} a[\Sigma^{\circ} \text{ po.the}][\Sigma^{\circ} \text{ o}] \text{sis}]$	[_ω a[_{Σ°} pò.the][_{Σ°} ó]sis]	E 1		1	2+1=3

Blocking can break down, though, because it happens in processing

- Nonanalytic entry [p-word (('æ^µ.ıæ^µ)bik)] (Árabic) races against synthesis, [stem level æıæb ik]
- If the whole word isn't frequent enough, the entry isn't accessible enough, so it can lose out to synthesis, resulting in a regularized production.
- And if the exceptional form isn't produced often enough, the next generation won't learn it.

Frequency effects

• Classic cyclicity :

cónt[ə]mplàte cònt[ə]mplát	-ion :-ion
b. cond[ɛ́]mn cònd[ɛ̀]mn-á	tion

• but :

a.	cons[ś]rve	b.	còns[ə]rv-átion
	trànsp[5]rt		trànsp[ə]rt-átion

(p. 30)

• The reason is frequency :

(33)		(× per 10 ⁶ words in spoken section of COCA)			
			base		derivative
a.	cyclic stress				
	cond[ɛ́]mn	cònd[ɛ̀]mn-átion	7.09	>	2.57
	imp[5]rt	ìmp[ɔ̀]rt-átion	5.15	>	0.62
b.	variable stres cond[ɛ́]nse	s cònd[è~ə]ns-átion	0.28	æ	0.22
с.	noncyclic stre	255			
	cons[ś]rve	còns[ə]rv-átion	1.65	<	9.11
	trànsp[5]rt	trànsp[ə]rt-átion	7.23	<	23.54

See Collie 2008 for a full study

To sum up today

- We looked at several cases of lexical frequency's influencing phonology.
- We considered putting the explanation in diachrony, processing, and/or grammar.
- Next week
- More about phonology and processing
- Getting phonological evidence

References

Alcantara, Jonathan B. 1998. The Architecture of the English Lexicon. Cornell University.

- Bell, Alan, Jason M. Brenier, Michelle Gregory, Cynthia Girand & Dan Jurafsky. 2009. Predictability effects on durations of content and function words in conversational English. *Journal of Memory and Language* 60(1). 92–111. doi:10.1016/j.jml.2008.06.003.
- Bermúdez-Otero, Ricardo. 2012. The architecture of grammar and the division of labour in exponence. In Jochen Trommer (ed.), *The morphology and phonology of exponence: the state of the art*, 8–83. Oxford: Oxford University Press.
- Boersma, Paul. 1999. On the need for a separate perception grammar. Manuscript. Amsterdam. Rutgers Optimality Archive.
- Bybee, Joan L. & Dan I. Slobin. 1982. Rules and Schemas in the Development and Use of the English past Tense. *Language* 58(2). 265–289. doi:10.2307/414099.
- Carlson, Matthew T & Chip Gerfen. 2011. Productivity is the key: morphophonology and the riddle of alternating diphthongs in Spanish. *Language* 87(3). 510–538.
- Chung, Sandra. 1983. Transderivational relationships in Chamorro phonology. Language 59. 35-66.
- Coetzee, Andries W. 2008. Phonological variation and lexical frequency. Porceedings of NELS 38.
- Collie, Sarah. 2008. English stress preservation: The case for "fake cyclicity." *English Language and Linguistics* 12(03). 505–532. doi:10.1017/S1360674308002736.
- Gouskova, Maria & Kevin Roon. 2008. Interface constraints and frequency in Russian compound stress. In Jodi Reich, Maria Babyonyshev & Darya Kavitskaya (eds.), *Proceedings of FASL 17*. Ann Arbor, MI: Michigan Slavic Publications.
- Hammond, Michael. 1999. Lexical frequency and rhythm. In Mike Darnell (ed.), *Functionalism and Formalism in Linguistics, Volume I: General Papers*, 329–358. John Benjamins.
- Hay, Jennifer. 2003. Causes and consequences of word structure. Routledge.
- Kirby, S. 2001. Spontaneous evolution of linguistic structure-an iterated learning model of the emergence of regularity and irregularity. *IEEE Transactions on Evolutionary Computation* 5(2). 102–110. doi:10.1109/4235.918430.
- Löfstedt, Ingvar. 2010. Phonetic Effects in Swedish Phonology: Allomorphy and Paradigms. UCLA Ph.D. Dissertation.
- Myers, James. 2005. Frequency effects and Optimality Theory. Handout. ROA #810-0306.
- Ng, E-Ching. 2010. Reduction, frequency and morphology in Singaporean English prosody. Manuscript. Yale University, ms. ROA #1102.
- Oxford English Corpus. Oxford English Corpus: Facts about the language. http://oxforddictionaries.com/words/the-oec-facts-about-the-language.
- Pinker, Steven. 2000. Words and rules: the ingredients of language. HarperCollins.
- Zuraw, Kie. 2009. Frequency influences on rule application within and across words. *Proceedings of CLS (Chicago Linguistic Society)* 43, 283–309.
- Zuraw, Kie. 2010. A model of lexical variation and the grammar with application to Tagalog nasal substitution. *Natural Language and Linguistic Theory* 28(2). 417–472. doi:10.1007/s11049-010-9095-z.