Class 7: Downward interfaces II, phonologization

To do

□ Manam assignment due Friday (Feb. 2)

□ Next reading (study question due Monday) is Hall 2006

Overview: Phonological processes often have a phonetic explanation. But they're somewhat abstracted from it—how does that happen?

1 First, I think we have time for one leftover

- Last time we talked about natural vs. unnatural phonological processes
 - the controversy being whether natural rules are really preferred by humans
 - ... or just more likely to arise diachronically
- So what about real phonology that is *un*natural?

Bach & Harms 1972: "crazy rules"

• E.g., Japanese coronals undergo affrication before certain vowels:

ta	t∫i	tsı	1		
da	dʒi				
sa	∫i	su			
za		zu			
-sono +core	rant onal oice>」	\rightarrow	+del rel = +strident αanterior	/	V +high αback

- Affrication before [u] seems very unnatural.
 - B&H propose the following series of events.
 - 1. Somebody innovates a rule that's phonetically reasonable:¹

 $L < \alpha \text{continuant} > \bot$

[-sonorant]	+del rel		[V]
	+strident	1	+high
L+coronal]	_+anterior_		_–back_

What does the syllable inventory look like now?

¹ I hope this is right—I'm changing what I think was a typo from old notes; I don't have the chapter handy.

2. The rule gets generalized a little in a way that's structurally (if not phonetically) reasonable:

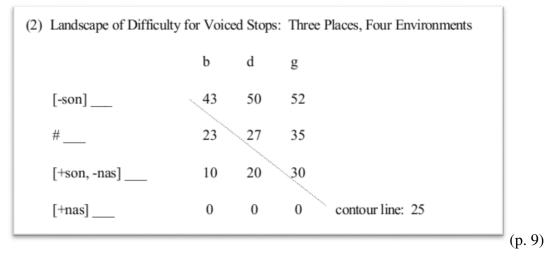
[component]	+del rel		V	
$ $ -sonorant $ $ \rightarrow	+strident	/	+high	
	α anterior		_αback_	

What does the syllable inventory look like now?

3. Now a new, also reasonable rule is innovated...

$$\begin{bmatrix} -\text{sonorant} \\ +\text{strident} \\ +\text{voice} \\ +\text{anterior} \end{bmatrix} \rightarrow [+\text{continuant}]$$

4. ...then generalized:

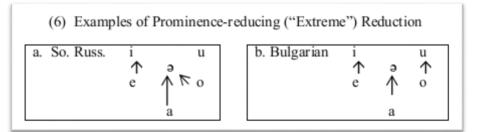

-sonorant		
+strident		F. (* (1
+voice	\rightarrow	[acontinuant]
$\lfloor \alpha$ anterior \rfloor		

- 5. And it all gets collapsed into the one "unholy" rule (p. 15).
- So each step is reasonable, but the result is rather unnatural.
- 2 Let's discuss what constraints we'd need for an OT analysis—some of them might be phonetically unmotivated.

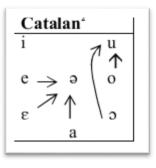
• The dream of a universal constraint set probably can't be completely fulfilled. We probably need to equip the learner with the ability to learn constraints (see Hayes & Wilson 2006).

2 Beautiful example from Hayes 1999

- Many factors affect how much aerodynamics favors voicing vs. voicelessness (see Ohala 1983, Westbury & Keating 1986) (Hayes p. 8)
 - <u>place of articulation</u>: fronter closure \rightarrow bigger oral chamber \rightarrow more room for the air \rightarrow airflow across glottis encouraged for longer
 - <u>closure duration</u>: as time passes during the closure, more air pressure in oral chamber → airflow across glottis discouraged
 - <u>being after a nasal</u>: as we saw last time, nasal leak and velar pumping \rightarrow encourage airflow
 - <u>being phrase/utterance-final</u>: subglottal pressure is lower \rightarrow airflow across glottis discouraged
- Hayes constructs the following "difficulty landscape" using an aerodynamic model (Keating 1984)
 - 0 means there's no problem effort needed to produce voicing
 - bigger numbers mean it's more difficult


- The thing is, there is no language that draws the line at 25
 - instead, languages draw vertical or horizontal lines that partly contradict the phonetics
 - *g (as in Dutch): ignores the fact that initial [g] is easier than post-obstruent [d]
- This can lead to seeming markedness contradictions in the corners:
 - *p (as in Arabic): even in geminates, you get only [bb], not *[pp]
 - *VOICEDGEMINATE (as in non-loan Japanese): only [pp], not *[bb]

3 Hayes's proposed solution [assumes analytic bias]


- The learner...
 - 1. ...compiles a difficulty map like the above
 - 2. ...constructs constraints according to certain templates (* $[\alpha F]$, * $[\alpha F][\beta G]$, * $[\alpha F,\beta G]$, etc.)
 - 3. ...evaluates constraints according to how often they correctly predict that one item in the map is harder than another
 - e.g., *g is correct about g/[-son]___vs. d/[-son]___
 - but wrong about g/#____vs. d/[-son]____
 - collect % of pairs for which prediction is correct
 - 4. ...to be accepted, a constraint must do better on the above test than all its "neighbors" that are equally or less complex
 - constraints are neighbors if they differ in just one symbol (whatever counts as a symbol in your theory)
 - e.g., *[coronal, +voice] and *[dorsal, +voice] are neighbors, equally complex
 - *g and *#g are neighbors; *g is less complex than *#g
- <u>Result</u>: The learner add complex constraints only if they justify themselves.
- Hayes ends up with constraints like *[+nasal][-voice] and *[dorsal, +voice], but nothing more complex.

4 Some other cases similar in spirit

- Crosswhite 1999: When stressed syllables have shorter duration, there's less time for jaw opening, so low vowels are disfavored.²
 - In some languages, result is neutralization with another V category, not just raising
 - Which category a V is neutralized with can be language-specific:

(Crosswhite 2000a, p. 4)

(Crosswhite 2000b, p. 3)

 $^{^{2}}$ That's not the only type of vowel reduction in unstressed syllables; Crosswhite also discusses the contrastenhancement type.

 \Rightarrow Despite shared phonetic motivation, different faithfulness rankings. These patterns aren't just an automatic result of reduced jaw lowering

- Zhang 2000: languages with contour tones (falling, rising, dipping) often restrict where those contours can appear, including
 - long vowels only
 - stressed syllables only
 - final syllables only
 - monosyllables only

 \rightarrow syllables that will canonically have longer duration in the sonorous portion of their rime are favored sites for contour tones

- Moreover, Zhang found that language-specific facts about, e.g., how much features of a coda consonant affect duration, affect where the contour tones can occur in that language.
- But the "**canonically**" is key: based on some typical speech rate and style, or averaged/normalized over speaking rates and style.
- What would be some of the (dubious?) predictions of a constraint like this: *CONTOUR/<200 msec

5 Incomplete neutralization

- Famously, phonetically driven "neutralization" isn't always real neutralization:
 - Warner et al. 2004 (and many others): final devoicing, as in Dutch, leaves behind (only partly reliable) durational differences
 - Zsiga 1995: the "[ʃ]" in *miss you* different from the one in *fish* or *impression*, both acoustically and articulatorily (electropalatography study)

A glimpse into phonologization in progress?

• Ellis & Hardcastle 2002 had speakers say sentences like these:

It's hard to believe the ba**n c**uts no ice I've heard the ba**ng c**omes as a big surprise (p. 379) • Subjects wore electropalates in their mouths—like a retainer, but electrodes in it record whether they're being contacted (by the tongue).

0	000000.	00 00 00	0000 00 00 00	00	0000 00 00 000 000	0000 00 00 000 000	0000 00 00 0000 0000	000	0000	00	00	00	
0		0000.00 0 000 0 00 0 00 0 00 0	0000.00 00 0000.00 00 0000 00 00 00 000 00	.000 0000.00 0000.00 000.00 000 00 0	0000.00 00 0000.00 00 0000 00 000 00 000 00	000.00 00 000.00 00 000 00 000 00	0000 00 0000 00 000 00 000 00	00 00 00 00 0.0 00 0.0 00 0 00 0 0.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	00 00 00 00 00 00 00 00	0 0.		0	
0 0		00	00000 0 000 0 00 0 00 0 000	000	000	6000 600 600 600 0000 00000	000 000 000 0000 00000	000 000 0000 00000		000 000 00000 00000	00 00 0000 0000	000 000 0000 00000	0000
315	00 00	00	00 00	00	00	000	00 000 0000	00 000 0000		00	00		

(there was also an EMA study)

- Some **tokens** of /n k/ had full alveolar contact
- Some tokens had partial alveolar contact
- Some tokens lacked alveolar contact but still showed evidence of a partial alveolar gesture
 as seen by the tongue contact along the sides of the palate
- Some tokens had no evidence of an alveolar gesture at all

1

(p. 381)

- Some speakers always or never lost the alveolar gesture; some varied
- Even among those speakers who varied, there were different patterns of variation
 - Some speakers showed a smooth continuum from no assimilation to full assimilation
 - looks like gradient gestural overlap
 - Other speakers were bimodal: either no assimilation or full assimilation
 - looks like an optional phonological process
- ? Let's discuss what these speakers' grammars could look like.

To sum up

• Regardless of how phonetic bias works, we need to explain cases in which it's not direct what do they tell us about the language apparatus?

Next time

• Structure below the segment: features, gestures, autosegmentalism in OT

References

- Bach, Emmon & Robert T Harms. 1972. How do languages get crazy rules? In Robert P Stockwell & Ronald K.S. Macaulay (eds.), *Linguistic change and generative theory*, 1–21. Indiana University Press.
- Crosswhite, Katherine. 1999. Vowel Reduction in Optimality Theory. UCLA PhD dissertation.
- Crosswhite, Katherine. 2000a. The analysis of extreme vowel reduction. In Adam Albright & Taehong Cho (eds.), *Papers in Phonology 4 [UCLA Working Papers in Linguistics 4]*, 1–12. Los Angeles: Department of LInguistics, UCLA.
- Crosswhite, Katherine. 2000b. Sonority-Driven reduction. *Proceedings of Berkeley Linguistic Society*. Berkeley, CA: BLS.
- Ellis, Lucy & William J. Hardcastle. 2002. Categorical and gradient properties of assimilation in alveolar to velar sequences: evidence from EPG and EMA data. *Journal of Phonetics* 30(3). 373–396. doi:10.1006/jpho.2001.0162.
- Hayes, Bruce. 1999. Phonetically driven phonology: the role of Optimality Theory and inductive grounding. In Michael Darnell, Frederick J Newmeyer, Michael Noonan, Edith Moravcsik & Kathleen Wheatley (eds.), *Functionalism and Formalism in Linguistics, Volume I: General Papers*, 243– 285. Amsterdam: John Benjamins.
- Hayes, Bruce & Colin Wilson. 2006. A Maximum Entropy Model of Phonotactics and Phonotactic Learning.
- Keating, Patricia. 1984. Aerodynamic modeling at UCLA. UCLA Working Papers in Phonetics 54. 18–28.
- Ohala, John. 1983. The origin of sound patterns in vocal tract constraints. In Peter MacNeilage (ed.), *The Production of Speech*, 189–216. New York: Springer-Verlag.
- Warner, Natasha, Allard Jongman, Joan Sereno & Rachel Kemps. 2004. Incomplete neutralization and other sub-phonemic durational differences in production and perception: evidence from Dutch. *Journal of Phonetics* 32. 251–276.
- Westbury, J. R & Patricia Keating. 1986. On the naturalness of stop consonant voicing. *Journal of Linguistics* 22. 145–166.
- Zhang, Jie. 2000. The effects of duration and sonority on contour tone distribution typological survey and formal analysis. University of California, Los Angeles PhD dissertation.
- Zsiga, Elizabeth. 1995. An acoustic and electropalatographic study of lexical and postlexical palatalization in American English. In B. Connell, A. Arvaniti, B. Connell & A. Arvaniti (eds.), *Papers in Laboratory Phonology IV*, 282–302. Cambridge, UK: Cambridge University Press.